Assessment Comparability and CalibrationBoth MTBS and DOI/USFS BAER Ma terjemahan - Assessment Comparability and CalibrationBoth MTBS and DOI/USFS BAER Ma Bahasa Indonesia Bagaimana mengatakan

Assessment Comparability and Calibr

Assessment Comparability and Calibration
Both MTBS and DOI/USFS BAER Mapping Support Programs use calibrated Landsat satellite
imagery corrected to top of atmosphere reflectance. Additional care is taken to select pre and
postfire images that are close in terms of vegetation phenology. This is not an exact science and a
limited archive of images may not allow for a close phenology match in the image pairs. An
assessment based upon an imperfect pre and postfire image pair can be used to generate a
reasonable thematic burn severity map, especially if field data are available for validation. The
thematic burn severity map derived for two or more fires can be compared. However, differences
in the scene pair phenology makes it difficult to reliably compare the dNBR index (continuous)
images of different fires. The dNBR or other index images will not necessarily be scaled equally,
For example, the analyst interpreted burn/no burn threshold dNBR value may be substantially
different between the dNBR images for two different fires.
EROS and RSAC are investigating methodologies to improve the calibration of dNBR and
dNDVI images for analyses of multiple fires over multiyear time periods. For example, one
approach involves determining (by analyst interpretation) the burn/no burn threshold in a dNBR
image and then shifting the dNBR image so that the burn/no burn threshold is equal to a value of
100 or some other consistent breakpoint. This process is done for all fires of interest and allows,
for example, the mosaicking of dNBR images across large areas for a given time period.
Another approach involves sampling a dNBR image outside of a burned area perimeter and
deriving a mean value for the sampled pixels. Theoretically, the dNBR values outside of the burn
or change area should approach zero. If the calculated offset value is positive it is subtracted
from the dNBR image, if the offset is negative then the value is added to all pixels in the dNBR image. This dNBR_Offset is collected by MTBS to derive the RdNBR index but is not used
operationally to scale the raw dNBR index. The evaluation of these and other approaches to
achieve dNBR calibration between multiple fires over time is in progress. Historical fires and
burn severity from 1972 to the present in the Mojave bioregion are being used to develop these
ideas.
Other Considerations for Future Large Area Studies
Although Landsat TM/ETM data record dates back to 1984, Landsat Multispectral Scanner
(MSS) data facilitate the potential to extend that data record. As part of the USGS EROS study
of the Mojave bioregion, MTBS data for the 1984 to present time period were acquired. This
data record was further extended by using Landsat MSS data and dNDVI assessments for fires
during the 1972 to 1983 time period.
Landsat MSS data lack the necessary SWIR band required to conduct NBR/dNBR analyses.
However, methods to compare continuous dNBR and dNDVI derived burn indexes or thematic
burn categories are being analyzed. Automated methods to extract and analyze data from the
MTBS archive are being explored to support large area projects evaluating multiple fires over
multiple years. For example, using automated scripts and MTBS published Landsat image
subsets, the NDVI and dNDVI index images are being created for historical MTBS mapped fires.
Additionally, automated dNBR or dNDVI calibration and severity classification techniques
similar to those previously described are being developed to avoid analyst intervention or
interpretation when building large area fire burn severity databases across landscapes (i.e.,
bioregions, political units, hydrologic basins, etc.). This work is designed to assist future MTBS
data users to assess historical fire patterns through time over large areas.
0/5000
Dari: -
Ke: -
Hasil (Bahasa Indonesia) 1: [Salinan]
Disalin!
Assessment Comparability and CalibrationBoth MTBS and DOI/USFS BAER Mapping Support Programs use calibrated Landsat satelliteimagery corrected to top of atmosphere reflectance. Additional care is taken to select pre andpostfire images that are close in terms of vegetation phenology. This is not an exact science and alimited archive of images may not allow for a close phenology match in the image pairs. Anassessment based upon an imperfect pre and postfire image pair can be used to generate areasonable thematic burn severity map, especially if field data are available for validation. Thethematic burn severity map derived for two or more fires can be compared. However, differencesin the scene pair phenology makes it difficult to reliably compare the dNBR index (continuous)images of different fires. The dNBR or other index images will not necessarily be scaled equally,For example, the analyst interpreted burn/no burn threshold dNBR value may be substantiallydifferent between the dNBR images for two different fires.EROS and RSAC are investigating methodologies to improve the calibration of dNBR anddNDVI images for analyses of multiple fires over multiyear time periods. For example, oneapproach involves determining (by analyst interpretation) the burn/no burn threshold in a dNBRimage and then shifting the dNBR image so that the burn/no burn threshold is equal to a value of100 or some other consistent breakpoint. This process is done for all fires of interest and allows,for example, the mosaicking of dNBR images across large areas for a given time period.Another approach involves sampling a dNBR image outside of a burned area perimeter andderiving a mean value for the sampled pixels. Theoretically, the dNBR values outside of the burnor change area should approach zero. If the calculated offset value is positive it is subtractedfrom the dNBR image, if the offset is negative then the value is added to all pixels in the dNBR image. This dNBR_Offset is collected by MTBS to derive the RdNBR index but is not usedoperationally to scale the raw dNBR index. The evaluation of these and other approaches toachieve dNBR calibration between multiple fires over time is in progress. Historical fires andburn severity from 1972 to the present in the Mojave bioregion are being used to develop theseideas.Other Considerations for Future Large Area StudiesAlthough Landsat TM/ETM data record dates back to 1984, Landsat Multispectral Scanner(MSS) data facilitate the potential to extend that data record. As part of the USGS EROS studyof the Mojave bioregion, MTBS data for the 1984 to present time period were acquired. Thisdata record was further extended by using Landsat MSS data and dNDVI assessments for firesduring the 1972 to 1983 time period.Landsat MSS data lack the necessary SWIR band required to conduct NBR/dNBR analyses.However, methods to compare continuous dNBR and dNDVI derived burn indexes or thematicburn categories are being analyzed. Automated methods to extract and analyze data from theMTBS archive are being explored to support large area projects evaluating multiple fires overmultiple years. For example, using automated scripts and MTBS published Landsat imagesubsets, the NDVI and dNDVI index images are being created for historical MTBS mapped fires.Additionally, automated dNBR or dNDVI calibration and severity classification techniquessimilar to those previously described are being developed to avoid analyst intervention orinterpretation when building large area fire burn severity databases across landscapes (i.e.,bioregions, political units, hydrologic basins, etc.). This work is designed to assist future MTBSdata users to assess historical fire patterns through time over large areas.
Sedang diterjemahkan, harap tunggu..
Hasil (Bahasa Indonesia) 2:[Salinan]
Disalin!
Penilaian Komparatif dan Kalibrasi
Kedua BAER Pemetaan Program Dukungan MTBS dan DOI / USFS menggunakan dikalibrasi satelit Landsat
citra dikoreksi ke atas atmosfer reflektansi. Perawatan tambahan diambil untuk memilih pra dan
gambar postfire yang dekat dalam hal vegetasi fenologi. Ini bukan ilmu pasti dan
arsip terbatas gambar mungkin tidak memungkinkan untuk pertandingan fenologi dekat di pasang gambar. Sebuah
penilaian berdasarkan pra dan postfire pasangan gambar yang tidak sempurna dapat digunakan untuk menghasilkan
wajar tematik peta membakar keparahan, terutama jika data lapangan yang tersedia untuk validasi. The
tematik peta membakar keparahan diturunkan untuk dua atau lebih kebakaran dapat dibandingkan. Namun, perbedaan
dalam pasangan adegan fenologi membuat sulit untuk dipercaya membandingkan indeks DNBR (terus menerus)
gambar kebakaran yang berbeda. The DNBR atau gambar indeks lainnya belum tentu akan ditingkatkan sama,
Sebagai contoh, analis ditafsirkan membakar / tidak ada nilai membakar threshold DNBR mungkin substansial
berbeda antara gambar DNBR untuk dua kebakaran yang berbeda.
EROS dan RSAC sedang menyelidiki metodologi untuk meningkatkan kalibrasi DNBR dan
dNDVI gambar untuk analisis beberapa kebakaran selama periode waktu multiyear. Misalnya, salah satu
pendekatan melibatkan menentukan (dengan penafsiran analis) luka bakar / tidak ambang batas luka bakar di DNBR
gambar dan kemudian menggeser gambar DNBR sehingga luka bakar / tidak ada batas membakar adalah sama dengan nilai
100 atau breakpoint konsisten lainnya. Proses ini dilakukan untuk semua kebakaran yang menarik dan memungkinkan,
misalnya, mosaicking gambar DNBR di daerah yang luas untuk jangka waktu tertentu.
Pendekatan lain melibatkan sampel gambar DNBR luar area perimeter terbakar dan
menurunkan nilai rata-rata untuk sampel piksel. Secara teoritis, nilai-nilai DNBR luar bakar
atau perubahan area harus mendekati nol. Jika nilai offset dihitung positif itu dikurangi
dari gambar DNBR, jika offset negatif maka nilai ditambahkan ke semua piksel dalam gambar DNBR. DNBR_Offset ini dikumpulkan oleh MTBS untuk menurunkan indeks RdNBR tetapi tidak digunakan
secara operasional untuk skala indeks DNBR baku. Evaluasi pendekatan ini dan lainnya untuk
mencapai DNBR kalibrasi antara beberapa kebakaran dari waktu ke waktu sedang berlangsung. Kebakaran sejarah dan
membakar keparahan dari 1972 sampai sekarang di bioregion Mojave yang digunakan untuk mengembangkan ini
ide.
Pertimbangan lain untuk Studi Wilayah Masa Depan Besar
Meskipun Landsat TM / ETM merekam data tanggal kembali ke 1984, Landsat Multispektral Scanner
(MSS) Data memfasilitasi potensial untuk memperluas bahwa merekam data. Sebagai bagian dari studi USGS EROS
dari bioregion Mojave, Data MTBS untuk tahun 1984 untuk periode saat ini diperoleh. Ini
merekam data kemudian diperpanjang dengan menggunakan data Landsat MSS dan penilaian dNDVI untuk kebakaran
selama periode waktu 1972-1983.
Data Landsat MSS kekurangan Band SWIR yang diperlukan yang diperlukan untuk melakukan NBR / DNBR analisis.
Namun, metode untuk membandingkan DNBR terus menerus dan dNDVI berasal membakar indeks atau tematik
kategori bakar sedang dianalisis. Otomatis metode untuk mengekstrak dan menganalisis data dari
arsip MTBS sedang dieksplorasi untuk mendukung daerah proyek-proyek besar mengevaluasi beberapa kebakaran selama
beberapa tahun. Misalnya, menggunakan otomatis script dan MTBS diterbitkan Landsat gambar
subset, yang NDVI dan dNDVI gambar indeks diciptakan untuk MTBS sejarah dipetakan kebakaran.
Selain itu, DNBR otomatis atau dNDVI kalibrasi dan klasifikasi keparahan teknik
yang sama dengan yang dijelaskan sebelumnya sedang dikembangkan untuk menghindari analis intervensi atau
interpretasi ketika membangun api wilayah database luka bakar tingkat keparahan besar di lanskap (yaitu,
bioregions, unit politik, cekungan hidrologi, dll). Pekerjaan ini dirancang untuk membantu masa depan MTBS
data pengguna untuk menilai pola api sejarah melalui waktu di daerah yang luas.
Sedang diterjemahkan, harap tunggu..
 
Bahasa lainnya
Dukungan alat penerjemahan: Afrikans, Albania, Amhara, Arab, Armenia, Azerbaijan, Bahasa Indonesia, Basque, Belanda, Belarussia, Bengali, Bosnia, Bulgaria, Burma, Cebuano, Ceko, Chichewa, China, Cina Tradisional, Denmark, Deteksi bahasa, Esperanto, Estonia, Farsi, Finlandia, Frisia, Gaelig, Gaelik Skotlandia, Galisia, Georgia, Gujarati, Hausa, Hawaii, Hindi, Hmong, Ibrani, Igbo, Inggris, Islan, Italia, Jawa, Jepang, Jerman, Kannada, Katala, Kazak, Khmer, Kinyarwanda, Kirghiz, Klingon, Korea, Korsika, Kreol Haiti, Kroat, Kurdi, Laos, Latin, Latvia, Lituania, Luksemburg, Magyar, Makedonia, Malagasi, Malayalam, Malta, Maori, Marathi, Melayu, Mongol, Nepal, Norsk, Odia (Oriya), Pashto, Polandia, Portugis, Prancis, Punjabi, Rumania, Rusia, Samoa, Serb, Sesotho, Shona, Sindhi, Sinhala, Slovakia, Slovenia, Somali, Spanyol, Sunda, Swahili, Swensk, Tagalog, Tajik, Tamil, Tatar, Telugu, Thai, Turki, Turkmen, Ukraina, Urdu, Uyghur, Uzbek, Vietnam, Wales, Xhosa, Yiddi, Yoruba, Yunani, Zulu, Bahasa terjemahan.

Copyright ©2024 I Love Translation. All reserved.

E-mail: