It has long been known that airflow in the bird lung ismainlyunidirect terjemahan - It has long been known that airflow in the bird lung ismainlyunidirect Bahasa Indonesia Bagaimana mengatakan

It has long been known that airflow

It has long been known that airflow in the bird lung ismainly
unidirectional [1, 2], and this has been attributed largely to
the bellows-like action of the air sacs. In a recent report, it
has been demonstrated that airflow in the alligator lung is
unidirectional just like in birds, despite the absence of air
sacs [3]. This has thrown more confusion into the already
controversial descriptions of the avian lung structure and
function. Over the years, the structure and function of the
avian lung have intrigued scientists and the actual structural
complexity is only beginning to come to light [4].
The seminal insights into the avian lung function such
as the description of unidirectional air flow [2, 5] and crosscurrent
gas exchange [6] were established in the duck lung.
While several studies have attempted to elucidate the fine
details of the avian lung structure, certain aspects that could
be directly related to function still remain enigmatic and
several techniques including 3D reconstruction have been attempted to resolve the spatial arrangement of the gas
exchange tissue [7–9]. Furthermore, lung structure among
vertebrates has been most refined in birds where the thinnest
blood gas-barrier is encountered [10, 11].
Generally, the avian lung is reported to be noncompliant
and ventilation is accomplished by the bellows-like action
of the air sacs [12, 13]. In a recent study, the definitive
structure of the lung of the domestic fowl has been documented
with the notion that four categories of secondary
bronchi are present [4]. It has previously been noted that
literature on the anatomy of the avian lung is vast, confusing,
and contradictory [14], but the picture in the extensively
studied domestic fowl has recently been elucidated
[4, 15, 16].
In the current study, the duck lung has been chosen
since it has been previously used largely in the study of the
lung function [5, 6, 17–19] and also in 3D elucidation of
the gas exchange structure (Woodward and Maina, 2008).
Much controversy has been mainly on the nomenclature,
0/5000
Dari: -
Ke: -
Hasil (Bahasa Indonesia) 1: [Salinan]
Disalin!
It has long been known that airflow in the bird lung ismainly
unidirectional [1, 2], and this has been attributed largely to
the bellows-like action of the air sacs. In a recent report, it
has been demonstrated that airflow in the alligator lung is
unidirectional just like in birds, despite the absence of air
sacs [3]. This has thrown more confusion into the already
controversial descriptions of the avian lung structure and
function. Over the years, the structure and function of the
avian lung have intrigued scientists and the actual structural
complexity is only beginning to come to light [4].
The seminal insights into the avian lung function such
as the description of unidirectional air flow [2, 5] and crosscurrent
gas exchange [6] were established in the duck lung.
While several studies have attempted to elucidate the fine
details of the avian lung structure, certain aspects that could
be directly related to function still remain enigmatic and
several techniques including 3D reconstruction have been attempted to resolve the spatial arrangement of the gas
exchange tissue [7–9]. Furthermore, lung structure among
vertebrates has been most refined in birds where the thinnest
blood gas-barrier is encountered [10, 11].
Generally, the avian lung is reported to be noncompliant
and ventilation is accomplished by the bellows-like action
of the air sacs [12, 13]. In a recent study, the definitive
structure of the lung of the domestic fowl has been documented
with the notion that four categories of secondary
bronchi are present [4]. It has previously been noted that
literature on the anatomy of the avian lung is vast, confusing,
and contradictory [14], but the picture in the extensively
studied domestic fowl has recently been elucidated
[4, 15, 16].
In the current study, the duck lung has been chosen
since it has been previously used largely in the study of the
lung function [5, 6, 17–19] and also in 3D elucidation of
the gas exchange structure (Woodward and Maina, 2008).
Much controversy has been mainly on the nomenclature,
Sedang diterjemahkan, harap tunggu..
Hasil (Bahasa Indonesia) 2:[Salinan]
Disalin!
Ini telah lama diketahui bahwa aliran udara di paru-paru burung ismainly
searah [1, 2], dan ini telah disebabkan sebagian besar
aksi bellow-seperti kantung udara. Dalam sebuah laporan baru-baru ini, ia
telah menunjukkan bahwa aliran udara di paru-paru buaya adalah
searah seperti pada burung, meskipun tidak ada udara
kantung [3]. Hal ini telah dilemparkan ke dalam kebingungan sudah
deskripsi kontroversial struktur paru-paru burung dan
fungsi. Selama bertahun-tahun, struktur dan fungsi
paru-paru burung telah tertarik ilmuwan dan struktur yang sebenarnya
kompleksitas hanya mulai terungkap [4].
Wawasan mani ke dalam fungsi paru-paru burung seperti
sebagai gambaran aliran udara searah [2, 5] dan crosscurrent
gas exchange [6] didirikan di paru-paru bebek.
Sementara beberapa studi telah berusaha untuk menjelaskan denda
rincian struktur paru-paru burung, aspek-aspek tertentu yang dapat
langsung berhubungan dengan fungsi masih tetap misterius dan
teknik beberapa termasuk rekonstruksi 3D telah berusaha untuk menyelesaikan tata ruang gas
jaringan pertukaran [7-9]. Selain itu, struktur paru-paru di kalangan
vertebrata telah paling halus pada burung di mana tertipis
darah gas-penghalang ditemui [10, 11].
Secara umum, paru-paru burung dilaporkan patuh
dan ventilasi dilakukan dengan aksi bellow seperti
udara kantung [12, 13]. Dalam penelitian terbaru, yang definitif
struktur paru-paru dari unggas domestik telah didokumentasikan
dengan gagasan bahwa empat kategori sekunder
bronkus yang hadir [4]. Hal ini sebelumnya telah mencatat bahwa
literatur tentang anatomi paru-paru burung sangat luas, membingungkan,
dan bertentangan [14], tapi gambar di ekstensif
unggas domestik dipelajari baru-baru ini dijelaskan
[4, 15, 16].
Dalam studi saat ini , paru-paru bebek telah dipilih
karena telah digunakan sebelumnya sebagian besar dalam studi tentang
fungsi paru-paru [5, 6, 17-19] dan juga dalam penjelasan 3D dari
struktur pertukaran gas (Woodward dan Maina, 2008).
Banyak kontroversi telah terutama pada nomenklatur tersebut,
Sedang diterjemahkan, harap tunggu..
 
Bahasa lainnya
Dukungan alat penerjemahan: Afrikans, Albania, Amhara, Arab, Armenia, Azerbaijan, Bahasa Indonesia, Basque, Belanda, Belarussia, Bengali, Bosnia, Bulgaria, Burma, Cebuano, Ceko, Chichewa, China, Cina Tradisional, Denmark, Deteksi bahasa, Esperanto, Estonia, Farsi, Finlandia, Frisia, Gaelig, Gaelik Skotlandia, Galisia, Georgia, Gujarati, Hausa, Hawaii, Hindi, Hmong, Ibrani, Igbo, Inggris, Islan, Italia, Jawa, Jepang, Jerman, Kannada, Katala, Kazak, Khmer, Kinyarwanda, Kirghiz, Klingon, Korea, Korsika, Kreol Haiti, Kroat, Kurdi, Laos, Latin, Latvia, Lituania, Luksemburg, Magyar, Makedonia, Malagasi, Malayalam, Malta, Maori, Marathi, Melayu, Mongol, Nepal, Norsk, Odia (Oriya), Pashto, Polandia, Portugis, Prancis, Punjabi, Rumania, Rusia, Samoa, Serb, Sesotho, Shona, Sindhi, Sinhala, Slovakia, Slovenia, Somali, Spanyol, Sunda, Swahili, Swensk, Tagalog, Tajik, Tamil, Tatar, Telugu, Thai, Turki, Turkmen, Ukraina, Urdu, Uyghur, Uzbek, Vietnam, Wales, Xhosa, Yiddi, Yoruba, Yunani, Zulu, Bahasa terjemahan.

Copyright ©2024 I Love Translation. All reserved.

E-mail: