Note that this pdf shows a distinct peak at zero which is due to the e terjemahan - Note that this pdf shows a distinct peak at zero which is due to the e Bahasa Indonesia Bagaimana mengatakan

Note that this pdf shows a distinct

Note that this pdf shows a distinct peak at zero which is due to the existence of frequent pauses and low level speech segments. Short-time pdfs of speech segments are also single-peaked functions and are usually approximated as a Gaussian distribution.
Nonuniform quantizers, including the vector quantizers, attempt to match the distribution of quantization levels to that of the pdfof the input speech signal by allocating more quantization levels in regions of high probability and fewer levels in regions where the probability is low.
Aurocorrelation Function (ACF) — Another very useful property of speech signals is that there exists much correlation between adjacent samples of a segment of speech. This, implies that in every sample of speech, there is a large
component that is easily predicted from the value of the previous samples with a small random error. All differential and predictive coding schemes are based on exploiting this property. The autocorrelation function (ACF) gives a quantitative measure of the closeness or similarity between samples of a speech signal as a function of their time separation. This function is mathematically defined as [Jay84]


where x(k) represents the k the speech sample. The autocorrelation function is often normalised to the variance of the speech signal and hence is constrained to have values in the range {-1.1} with C(0) = 1 . Typical signals have an adjacent sample correlation, C (1) , as high as 0.85 to 0.9.

Power Spectral Density Fisnetion (PSD) — The nonflat characteristic of the power spectral density of speech makes it possible to obtain significant compression by coding speech in the Frequency domain. the nonflat nature of the PSD is basically a frequency domain manifestation of the nonzero autocorrelation property. Typical long-term averaged PSD's of speech show that high frequency components contribute very little to the total speech energy. This indicates that coding speech separately in difierent frequency bands can lead to significant coding gain. However, it should be noted that the high frequency components, though insignificant in energy are very important carriers of speech information and hence need to be adequately represented in the coding system.

A qualitative measure of the theoretical maximum coding gain that can be obtained by exploiting the nonflat characteristics of the speech spectra is given by the spectral flatness measure (SFM). The SFM is defined as the ratio of the arithmetic to geometric mean of the samples of the PSD taken at uniform intervals in frequency. Mathematically,
0/5000
Dari: -
Ke: -
Hasil (Bahasa Indonesia) 1: [Salinan]
Disalin!
Dicatat bahwa pdf ini menunjukkan puncak berbeda nol yang disebabkan adanya sering jeda dan segmen pidato tingkat rendah. Waktu singkat PDF pidato segmen juga memuncak satu fungsi dan biasanya diperkirakan sebagai distribusi Gaussian. Quantizers nonuniform, termasuk quantizers vektor, mencoba untuk mencocokkan distribusi kuantisasi tingkat untuk bahwa dari pdfof pidato input sinyal dengan mengalokasikan lebih sedikit tingkat di daerah mana probabilitas rendah dan tingkat kuantisasi lebih di daerah probabilitas tinggi. Aurocorrelation fungsi (ACF) — properti sangat berguna yang lain pidato sinyal adalah bahwa ada banyak korelasi antara berdekatan sampel segmen pidato. Ini berarti setiap sampel pidato, ada besarkomponen yang mudah diprediksi dari nilai sampel sebelumnya dengan kesalahan acak yang kecil. Semua diferensial dan prediktif skema pengkodean berdasarkan mengeksploitasi ini. Fungsi Autokorelasi (ACF) memberikan ukuran kuantitatif kedekatan atau kesamaan antara sampel sinyal pidato sebagai fungsi dari waktu perpisahan mereka. Fungsi ini adalah secara matematis defined sebagai [Jay84]dimana x(k) mewakili k sampel pidato. Fungsi Autokorelasi adalah sering dinormalisasi untuk varians sinyal pidato dan karenanya dibatasi untuk memiliki nilai-nilai dalam kisaran {-1.1} dengan C(0) = 1. Khas sinyal memiliki korelasi berdekatan sampel, C (1), setinggi 0.85, 9.Daya spektrum kerapatan Fisnetion (PSD) — nonflat karakteristik kerapatan spektral daya pidato menjadikannya mungkin untuk mendapatkan significant kompresi dengan pengkodean pidato dalam frekuensi domain. sifat nonflat PSD pada dasarnya adalah manifestasi domain frekuensi bukan nol Autokorelasi properti. Khas jangka panjang rata-rata PSD's pidato menunjukkan bahwa komponen-komponen frekuensi tinggi memberikan kontribusi sangat sedikit untuk energi total pidato. Hal ini menunjukkan bahwa pengkodean pidato secara terpisah band frekuensi difierent dapat menyebabkan significant coding keuntungan. Namun, perlu dicatat bahwa komponen-komponen frekuensi tinggi, meskipun insignificant energi adalah operator yang sangat penting informasi berbicara dan karenanya harus memadai diwakili dalam sistem pengkodean.Ukuran kualitatif maksimum teoritis pengkodean keuntungan yang dapat diperoleh dengan memanfaatkan nonflat karakteristik spektrum pidato yang diberikan oleh spektral flatness ukuran (SFM). SFM adalah defined sebagai rasio aritmatika untuk purata geometris sampel PSD diambil pada interval yang seragam di frekuensi. Secara matematis,
Sedang diterjemahkan, harap tunggu..
Hasil (Bahasa Indonesia) 2:[Salinan]
Disalin!
Perhatikan bahwa pdf ini menunjukkan puncak yang berbeda di nol yang disebabkan oleh adanya jeda sering dan segmen pidato tingkat rendah. Pdf waktu singkat segmen pidato juga fungsi tunggal memuncak dan biasanya diperkirakan sebagai distribusi Gaussian.
quantizers seragam, termasuk quantizers vektor, upaya untuk mencocokkan distribusi tingkat kuantisasi dengan yang ada pada pdfof sinyal suara masukan dengan mengalokasikan lebih banyak level kuantisasi di daerah probabilitas tinggi dan tingkat yang lebih sedikit di daerah di mana probabilitas rendah.
Aurocorrelation Fungsi (ACF) - properti yang sangat berguna lain sinyal suara adalah bahwa ada banyak hubungan antara sampel yang berdekatan dari segmen berbicara. Ini, menunjukkan bahwa dalam setiap sampel berbicara, ada yang besar
komponen yang mudah diprediksi dari nilai sampel sebelumnya dengan kesalahan acak kecil. Semua skema diferensial dan coding prediktif didasarkan pada pemanfaatan properti ini. Fungsi autokorelasi (ACF) memberikan ukuran kuantitatif dari kedekatan atau kesamaan antara sampel dari sinyal suara sebagai fungsi pemisahan waktu mereka. Fungsi ini secara matematis didefinisikan sebagai [Jay84] di mana x (k) merupakan k sampel pidato. Fungsi autokorelasi sering dinormalisasi dengan varians dari sinyal suara dan karenanya dibatasi untuk memiliki nilai-nilai dalam kisaran {-1,1} dengan C (0) = 1. Sinyal Khas memiliki korelasi sampel yang berdekatan, C (1), setinggi 0,85-0,9. Rapat Spektrum Daya Fisnetion (PSD) - non fl pada karakteristik kepadatan spektral daya pidato memungkinkan untuk mendapatkan signifikan kompresi fi kan dengan coding pidato di Frekuensi domain. sifat tidak rata dari PSD pada dasarnya merupakan manifestasi domain frekuensi properti autokorelasi nol. Jangka panjang khas rata-rata PSD pidato menunjukkan bahwa komponen frekuensi tinggi memberikan kontribusi sangat sedikit untuk energi pidato keseluruhan. Hal ini menunjukkan bahwa coding pidato secara terpisah pada pita frekuensi di fi erent dapat menyebabkan signifikan coding gain. Namun, perlu dicatat bahwa komponen frekuensi tinggi, meskipun tidak signifikan dalam energi adalah pembawa informasi yang sangat penting pidato dan karenanya harus terwakili secara memadai dalam sistem pengkodean. Ukuran kualitatif keuntungan maksimum teoritis coding yang dapat diperoleh dengan memanfaatkan non fl pada karakteristik spektrum pidato diberikan oleh spektral ukuran fl atness (SFM). The SFM adalah didefinisikan sebagai rasio aritmatika untuk rata-rata geometris dari sampel dari PSD yang diambil pada interval seragam frekuensi. Secara matematis,







Sedang diterjemahkan, harap tunggu..
 
Bahasa lainnya
Dukungan alat penerjemahan: Afrikans, Albania, Amhara, Arab, Armenia, Azerbaijan, Bahasa Indonesia, Basque, Belanda, Belarussia, Bengali, Bosnia, Bulgaria, Burma, Cebuano, Ceko, Chichewa, China, Cina Tradisional, Denmark, Deteksi bahasa, Esperanto, Estonia, Farsi, Finlandia, Frisia, Gaelig, Gaelik Skotlandia, Galisia, Georgia, Gujarati, Hausa, Hawaii, Hindi, Hmong, Ibrani, Igbo, Inggris, Islan, Italia, Jawa, Jepang, Jerman, Kannada, Katala, Kazak, Khmer, Kinyarwanda, Kirghiz, Klingon, Korea, Korsika, Kreol Haiti, Kroat, Kurdi, Laos, Latin, Latvia, Lituania, Luksemburg, Magyar, Makedonia, Malagasi, Malayalam, Malta, Maori, Marathi, Melayu, Mongol, Nepal, Norsk, Odia (Oriya), Pashto, Polandia, Portugis, Prancis, Punjabi, Rumania, Rusia, Samoa, Serb, Sesotho, Shona, Sindhi, Sinhala, Slovakia, Slovenia, Somali, Spanyol, Sunda, Swahili, Swensk, Tagalog, Tajik, Tamil, Tatar, Telugu, Thai, Turki, Turkmen, Ukraina, Urdu, Uyghur, Uzbek, Vietnam, Wales, Xhosa, Yiddi, Yoruba, Yunani, Zulu, Bahasa terjemahan.

Copyright ©2024 I Love Translation. All reserved.

E-mail: