this paper aims to describe the prevalence of key NCD risk factors ass terjemahan - this paper aims to describe the prevalence of key NCD risk factors ass Bahasa Indonesia Bagaimana mengatakan

this paper aims to describe the pre

this paper aims to describe the prevalence of key NCD risk factors assessed by the survey
but the most impressive study was done by Kawasaki (1958) [5]. He used venous catheterization on 7 microfilaria carriers in Kagoshima at different times of day to find sites of microfilaria concentration. He counted the number of microfilariae in blood obtained from the cubital vein, femoral artery, right auricle, right ventricle, pulmonary artery, pulmonary capillary, hepatic vein and renal vein. His findings clearly showed that the pulmonary capillaries were the regular site of diurnal concentration of W. bancrofti microfilariae.

For Dirofilaria immitis, the periodic migration of microfilariae was supported by Kawakami and Nagasawa (1926) [6], Murata (1939) [7] and Shibata (1965) [8].

Some parasitologists studied the mechanisms of periodicity of microfilariae in relation to the circadian rhythm of the host, and others in relation to the response of microfilariae to external stimuli.
1.1 Effects of host rhythm on microfilarial perio-dicity

Attempts were made to alter the microfilarial cycle by subjecting the host to continuous light or continuous darkness. Sugamura (1921) detected microfilariae in the peripheral blood during the daytime when patients were kept in the dark [9]. Otsuji (1958) detected microfilariae in the peripheral blood late at night in summer, and early at night in winter when the sunset is hours earlier than in summer [10]. However, Era (1959) found only a few microfilariae in the peripheral blood during the day when patients worked in a coal mine during daytime for 20 days [11].

On the other hand, Era (1959) studied the circadian rhythm of D. immitis microfilariae in dogs forced to walk during the night and sleep during the day for 21 days. A significant fall in microfilaria count was found at night, and a rise in microfilaria count during the day [11]. In dogs infected with D. immitis, lowering the body temperature was followed by a remarkable fall in the count and a less marked circadian rhythm of microfilariae (Katamine et al., 1960) [12]. High pressure breathing and hyperventilation produced a significant increase in microfilaria count and less marked circadian rhythm of microfilariae (Shibata, 1965) [13].

Yoshida (1966) attempted to examine the circadian cycle of microfilariae of patients who traveled from Okinawa to Bolivia every week for 2 months [14]. Interestingly, the periodicity of microfilariae become adapted to the light/dark cycle of the location of the passenger ship.

Although other valuable experimental evidence was accumulated, it was not possible to identify the physiological factors in the hosts that caused the circadian cycle of microfilariae.
1.2 Response of mierofilariae to external stimuli

Masuya and his colleagues conducted intensive studies on the mechanism of periodicity of microfilariae in relation to the response of microfilariae to external stimuli, especially to light. Masuya (1976) noted diffuse autofluorescence and numerous fluorescent granules in the body of the microfilariae of highly nocturnal species like W. bancrofti [15]. These granules were not found in non-periodic species (Setaria, Onehocerea, etc.). The comparison of the distribution and number of autofluorescent granules in the microfilarial specimens in 21 strains of 13 species collected from around the world revealed an approximate parallelism between the pattern of periodicity and the density of autofluorescent granules. It was concluded that the granules were acting as photoreceptors responsible for the negative phototaxis of microfilariae. Microfilariae of W. bancrofti had been reported to show negative phototaxis (Suganuma 1921) [9]. Masuya’s group chemically analyzed the granules of nocturnal W. bancrofti and found that they contain vitamin A and carotenoid substances.
1.3 Effect of dietltyicarbamazine on microfilarial periodicity

Various drugs have been reported to exert an effect on microfilaria count or periodicity of microfilariae. Diethylcarbamazine (DEC) had a significant effect on the circadian cycle of microfilariae (Katamine et al., 1952) [16]. Administration of a small dose of DEC (0.02-0.1 g) induced an immediate rise in microfilaria count during the daytime. DEC induced the highest count 5-15 min after oral administration of DEC and altered the defined circadian cycle of microfilariae (Tamura 1954; Iwamoto, 1971) [17, 18]. Based on these findings, the DEC-induced rise in microfilaria count was used for the diagnosis of bancroftian filariasis during daytime (DEC provocation test).

Although many significant experimental findings were accumulated by Japanese parasitologists, the mechanism of microfilarial periodicity remained unknown. There are reviews by Katamine (1970), Katamine (1972) and Masuya (1993) [19-21]. Outside Japan, the “oxygen barrier theory” was proposed by Hawking (1975), who found that microfilariae flowed out of the pulmonary capillary barrier into the peripheral blood when the pO2 difference between the pulmonary artery and vein decreased to below 55 mmHg [22].
Go to:
2 Immunological studies

The immunological studies conducted in Japan cover a wide range of research subjects. Fujita et al. (1983) [23] and Tajima et al. (1983) [24] found the interesting fact that prevalence of adult T cell leukemia (ATL) was geographically very similar to that of bancroftian filariasis in Japan. They showed the close relationship between the anti-filaria antibody titers and anti-ATL virus titers in the endemic area of filariasis. Sato (1991) proposed the hypothesis that filarial infection stimulates the augmentation of IL-2 receptor on T cells [25].

Extensive studies on filaria-induced modulation of host immunological reactions were conducted by Fujita and his colleagues. Since their papers were published in international journals, those papers are not reviewed in this article.

Some parasitologists dealt with the mechanism of killing of microfilariae and protective immunity against filarial infection. Kobayakawa et al. (1974) stressed the role of sensitized lymphocytes in the killing of microfilariae using the Litomosoides carinii-cotton rat model [26]. Their in vitro cytotoxicity study revealed a high mortality rate of microfilariae cultured in the presence of sensitized peritoneal exudate cells. The diffusion chamber study showed that sensitized splenic and peritoneal exudate cells had a significantly high microfilaricidal activity

Hayashi et al. (1984a, 1984b) examined the effect of vaccination with radiation-attenuated infective larvae of Brugia malayi and B. pahangi on BALB/c mice [27, 28]. Vaccinated mice showed 33.8-99.5% reduction in recovered worms in the challenge infection as compared to the control, and passive transfer of protective immunity with serum and/or spleen cells from vaccinated mice to normal mice was successful. Moreover, Tanaka (1986) succeeded in the production of monoclonal antibodies that produced a significant microfilaria reduction in mice and promoted in vitro adherence of normal mouse spleen cells to microfilariae [29]. Hayashi et al. (1984c) stressed the role of the mononuclear phagocyte system (MPS) in DEC-induced clearance of microfilariae in the L. carinii-cotton rat model. DEC-mediated clearance of microfilariae was remarkably enhanced by the activation of MPS and depressed by the blockade of MPS [30].
Go to:
3 Parasite-intermediate host relationship

It has been universally recognized that microfilariae exsheath in the midgut and invade the thoracic muscle of a mosquito and that the rate of exsheathed microfilariae in the midgut has a close relationship with the susceptibility of mosquitoes to the filarial parasite. Japanese parasitologists have clarified significant facts in relation to the exsheathment of microfilariae, the invasion of microfilariae into the muscle and the susceptibility of mosquitoes.

Aoki (1971a, 1971b) recorded the fact that microfilariae of W. bancrofti exsheath in vitro on a clot of blood or agar plate [31, 32]. When microfilariae were placed on the agar or clot, they immediately started to move about within the sheath, breaking the anterior tip of the sheath and completing the exsheathment. These observations strongly suggest that the exsheathment of microfilariae in the midgut of mosquitoes is triggered when the movement of microfilariae is severely restricted by the formation of a clot of blood.

Yamamoto et al. (1983) reported that many sheathed microfilariae passed through the midgut wall and invaded the muscle [33]. Their additional experiments revealed that the sheathed larvae successively developed to the infective larvae when they were artificially inoculated into the muscle of mosquitoes.

Yamamoto et al. (1985) and Kobayashi et al. (1986) reported that the susceptibility of mosquitoes to filarial worms was directly related to melanization or encapsulation of microfilariae in the muscle of mosquitoes [34, 35]. When B. malayi microfilariae were digested by Armigeres subalbatus, most of them were subjected to melanization. When B. pahangi microfilariae were digested by the same species of mosquitoes, they were not encapsulated and successively developed to infective larvae. Kobayashi et al. (1991) devised an in vitro method by which melanization of microfilariae was quantitatively assayed, and they revealed that the exsheathed B. malayi microfilariae were easily encapsulated by the hemolymph of A. subalbatus, while only a few exsheathed B. pahangi were encapsulated [36].
Go to:
4 Mode of action of diethylcarbamazine

The mode of action of DEC is a research subject that has challenged many Japanese parasitologists over the years. The papers cited in this review describe the exciting results regarding the mode of action of DEC. However, these papers have gone mostly unnoticed outside Japan, because they were published in Japanese.

Fujimaki (1956, 1958) examined the serum concentration of DEC in patients in
0/5000
Dari: -
Ke: -
Hasil (Bahasa Indonesia) 1: [Salinan]
Disalin!
Makalah ini bertujuan untuk menggambarkan prevalensi kunci faktor risiko NCD yang dinilai oleh surveitetapi studi paling mengesankan ini dilakukan oleh Kawasaki (1958) [5]. Dia menggunakan kateterisasi vena pada 7 microfilaria operator di Kagoshima pada waktu yang berbeda hari untuk menemukan situs microfilaria konsentrasi. Dia menghitung jumlah microfilariae darah yang Diperoleh dari kubiti vena, arteri femoral, daun telinga kanan, ventrikel kanan, arteri paru-paru, kapiler paru, hepatik vein dan vena ginjal. Temuannya dengan jelas menunjukkan bahwa kapiler paru situs reguler diurnal konsentrasi W. bancrofti microfilariae.Untuk alat ini digunakan untuk immitis, migrasi periodik microfilariae didukung oleh Kawakami dan Nagasawa (1926) [6], Murata (1939) [7] dan Shibata (1965) [8].Parasitologists beberapa mempelajari mekanisme periodisitas microfilariae dalam hubungannya dengan ritme sirkadian host, dan lain-lain berkaitan dengan respon microfilariae untuk rangsangan eksternal.1.1 efek irama host pada microfilarial perio-dicityAttempts were made to alter the microfilarial cycle by subjecting the host to continuous light or continuous darkness. Sugamura (1921) detected microfilariae in the peripheral blood during the daytime when patients were kept in the dark [9]. Otsuji (1958) detected microfilariae in the peripheral blood late at night in summer, and early at night in winter when the sunset is hours earlier than in summer [10]. However, Era (1959) found only a few microfilariae in the peripheral blood during the day when patients worked in a coal mine during daytime for 20 days [11].On the other hand, Era (1959) studied the circadian rhythm of D. immitis microfilariae in dogs forced to walk during the night and sleep during the day for 21 days. A significant fall in microfilaria count was found at night, and a rise in microfilaria count during the day [11]. In dogs infected with D. immitis, lowering the body temperature was followed by a remarkable fall in the count and a less marked circadian rhythm of microfilariae (Katamine et al., 1960) [12]. High pressure breathing and hyperventilation produced a significant increase in microfilaria count and less marked circadian rhythm of microfilariae (Shibata, 1965) [13].Yoshida (1966) attempted to examine the circadian cycle of microfilariae of patients who traveled from Okinawa to Bolivia every week for 2 months [14]. Interestingly, the periodicity of microfilariae become adapted to the light/dark cycle of the location of the passenger ship.Although other valuable experimental evidence was accumulated, it was not possible to identify the physiological factors in the hosts that caused the circadian cycle of microfilariae.1.2 Response of mierofilariae to external stimuliMasuya and his colleagues conducted intensive studies on the mechanism of periodicity of microfilariae in relation to the response of microfilariae to external stimuli, especially to light. Masuya (1976) noted diffuse autofluorescence and numerous fluorescent granules in the body of the microfilariae of highly nocturnal species like W. bancrofti [15]. These granules were not found in non-periodic species (Setaria, Onehocerea, etc.). The comparison of the distribution and number of autofluorescent granules in the microfilarial specimens in 21 strains of 13 species collected from around the world revealed an approximate parallelism between the pattern of periodicity and the density of autofluorescent granules. It was concluded that the granules were acting as photoreceptors responsible for the negative phototaxis of microfilariae. Microfilariae of W. bancrofti had been reported to show negative phototaxis (Suganuma 1921) [9]. Masuya’s group chemically analyzed the granules of nocturnal W. bancrofti and found that they contain vitamin A and carotenoid substances.1.3 Effect of dietltyicarbamazine on microfilarial periodicityVarious drugs have been reported to exert an effect on microfilaria count or periodicity of microfilariae. Diethylcarbamazine (DEC) had a significant effect on the circadian cycle of microfilariae (Katamine et al., 1952) [16]. Administration of a small dose of DEC (0.02-0.1 g) induced an immediate rise in microfilaria count during the daytime. DEC induced the highest count 5-15 min after oral administration of DEC and altered the defined circadian cycle of microfilariae (Tamura 1954; Iwamoto, 1971) [17, 18]. Based on these findings, the DEC-induced rise in microfilaria count was used for the diagnosis of bancroftian filariasis during daytime (DEC provocation test).Although many significant experimental findings were accumulated by Japanese parasitologists, the mechanism of microfilarial periodicity remained unknown. There are reviews by Katamine (1970), Katamine (1972) and Masuya (1993) [19-21]. Outside Japan, the “oxygen barrier theory” was proposed by Hawking (1975), who found that microfilariae flowed out of the pulmonary capillary barrier into the peripheral blood when the pO2 difference between the pulmonary artery and vein decreased to below 55 mmHg [22].Go to:2 Immunological studiesThe immunological studies conducted in Japan cover a wide range of research subjects. Fujita et al. (1983) [23] and Tajima et al. (1983) [24] found the interesting fact that prevalence of adult T cell leukemia (ATL) was geographically very similar to that of bancroftian filariasis in Japan. They showed the close relationship between the anti-filaria antibody titers and anti-ATL virus titers in the endemic area of filariasis. Sato (1991) proposed the hypothesis that filarial infection stimulates the augmentation of IL-2 receptor on T cells [25].Extensive studies on filaria-induced modulation of host immunological reactions were conducted by Fujita and his colleagues. Since their papers were published in international journals, those papers are not reviewed in this article.Some parasitologists dealt with the mechanism of killing of microfilariae and protective immunity against filarial infection. Kobayakawa et al. (1974) stressed the role of sensitized lymphocytes in the killing of microfilariae using the Litomosoides carinii-cotton rat model [26]. Their in vitro cytotoxicity study revealed a high mortality rate of microfilariae cultured in the presence of sensitized peritoneal exudate cells. The diffusion chamber study showed that sensitized splenic and peritoneal exudate cells had a significantly high microfilaricidal activityHayashi et al. (1984a, 1984b) examined the effect of vaccination with radiation-attenuated infective larvae of Brugia malayi and B. pahangi on BALB/c mice [27, 28]. Vaccinated mice showed 33.8-99.5% reduction in recovered worms in the challenge infection as compared to the control, and passive transfer of protective immunity with serum and/or spleen cells from vaccinated mice to normal mice was successful. Moreover, Tanaka (1986) succeeded in the production of monoclonal antibodies that produced a significant microfilaria reduction in mice and promoted in vitro adherence of normal mouse spleen cells to microfilariae [29]. Hayashi et al. (1984c) stressed the role of the mononuclear phagocyte system (MPS) in DEC-induced clearance of microfilariae in the L. carinii-cotton rat model. DEC-mediated clearance of microfilariae was remarkably enhanced by the activation of MPS and depressed by the blockade of MPS [30].Go to:3 Parasite-intermediate host relationshipIt has been universally recognized that microfilariae exsheath in the midgut and invade the thoracic muscle of a mosquito and that the rate of exsheathed microfilariae in the midgut has a close relationship with the susceptibility of mosquitoes to the filarial parasite. Japanese parasitologists have clarified significant facts in relation to the exsheathment of microfilariae, the invasion of microfilariae into the muscle and the susceptibility of mosquitoes.Aoki (1971a, 1971b) recorded the fact that microfilariae of W. bancrofti exsheath in vitro on a clot of blood or agar plate [31, 32]. When microfilariae were placed on the agar or clot, they immediately started to move about within the sheath, breaking the anterior tip of the sheath and completing the exsheathment. These observations strongly suggest that the exsheathment of microfilariae in the midgut of mosquitoes is triggered when the movement of microfilariae is severely restricted by the formation of a clot of blood.Yamamoto et al. (1983) reported that many sheathed microfilariae passed through the midgut wall and invaded the muscle [33]. Their additional experiments revealed that the sheathed larvae successively developed to the infective larvae when they were artificially inoculated into the muscle of mosquitoes.Yamamoto et al. (1985) and Kobayashi et al. (1986) reported that the susceptibility of mosquitoes to filarial worms was directly related to melanization or encapsulation of microfilariae in the muscle of mosquitoes [34, 35]. When B. malayi microfilariae were digested by Armigeres subalbatus, most of them were subjected to melanization. When B. pahangi microfilariae were digested by the same species of mosquitoes, they were not encapsulated and successively developed to infective larvae. Kobayashi et al. (1991) devised an in vitro method by which melanization of microfilariae was quantitatively assayed, and they revealed that the exsheathed B. malayi microfilariae were easily encapsulated by the hemolymph of A. subalbatus, while only a few exsheathed B. pahangi were encapsulated [36].Go to:4 Mode of action of diethylcarbamazineThe mode of action of DEC is a research subject that has challenged many Japanese parasitologists over the years. The papers cited in this review describe the exciting results regarding the mode of action of DEC. However, these papers have gone mostly unnoticed outside Japan, because they were published in Japanese.Fujimaki (1956, 1958) examined the serum concentration of DEC in patients in
Sedang diterjemahkan, harap tunggu..
Hasil (Bahasa Indonesia) 2:[Salinan]
Disalin!
makalah ini bertujuan untuk menggambarkan prevalensi faktor risiko NCD kunci dinilai oleh survei
tetapi studi yang paling mengesankan dilakukan oleh Kawasaki (1958) [5]. Dia menggunakan kateterisasi vena pada 7 operator microfilaria di Kagoshima pada waktu yang berbeda dari hari untuk menemukan situs konsentrasi microfilaria. Dia menghitung jumlah mikrofilaria dalam darah diperoleh dari vena cubiti, arteri femoral, daun telinga kanan, ventrikel kanan, arteri pulmonalis, kapiler paru, vena hepatika dan vena ginjal. Temuannya jelas menunjukkan bahwa kapiler paru adalah situs biasa konsentrasi diurnal W. bancrofti mikrofilaria. Untuk cacing jantung, migrasi periodik mikrofilaria didukung oleh Kawakami dan Nagasawa (1926) [6], Murata (1939) [7] dan Shibata (1965) [8]. Beberapa parasitologists mempelajari mekanisme periodisitas mikrofilaria dalam kaitannya dengan ritme sirkadian dari tuan rumah, dan lain-lain dalam kaitannya dengan respon dari mikrofilaria terhadap rangsangan eksternal. 1.1 Pengaruh ritme host pada mikrofilaria periodontal dicity Upaya dilakukan untuk mengubah siklus mikrofilaria dengan menundukkan tuan rumah untuk cahaya kontinyu atau kegelapan terus-menerus. Sugamura (1921) terdeteksi mikrofilaria dalam darah perifer pada siang hari ketika pasien disimpan dalam gelap [9]. Otsuji (1958) terdeteksi mikrofilaria dalam darah perifer larut malam di musim panas, dan awal di malam hari di musim dingin ketika matahari terbenam jam lebih awal dari pada musim panas [10]. Namun, Era (1959) menemukan hanya beberapa mikrofilaria dalam darah perifer siang hari ketika pasien bekerja di sebuah tambang batu bara selama siang hari selama 20 hari [11]. Di sisi lain, Era (1959) mempelajari ritme sirkadian dari D. immitis mikrofilaria pada anjing dipaksa untuk berjalan pada malam hari dan tidur di siang hari selama 21 hari. Penurunan yang signifikan pada jumlah microfilaria ditemukan di malam hari, dan kenaikan microfilaria menghitung selama hari [11]. Pada anjing yang terinfeksi D. immitis, menurunkan suhu tubuh diikuti oleh penurunan luar biasa dalam hitungan dan ritme sirkadian kurang ditandai mikrofilaria (Katamine et al., 1960) [12]. Pernapasan tekanan tinggi dan hiperventilasi menghasilkan peningkatan yang signifikan dalam jumlah microfilaria dan kurang ditandai ritme sirkadian dari mikrofilaria (Shibata, 1965) [13]. Yoshida (1966) berusaha untuk memeriksa siklus sirkadian dari mikrofilaria pasien yang melakukan perjalanan dari Okinawa ke Bolivia setiap minggu selama 2 bulan [14]. Menariknya, periodisitas mikrofilaria menjadi disesuaikan dengan cahaya / siklus gelap lokasi kapal penumpang. Meskipun bukti eksperimental berharga lainnya terakumulasi, itu tidak mungkin untuk mengidentifikasi faktor-faktor fisiologis dalam host yang menyebabkan siklus sirkadian dari mikrofilaria. 1.2 Respon mierofilariae terhadap rangsangan eksternal Masuya dan rekan-rekannya melakukan studi intensif pada mekanisme periodisitas mikrofilaria dalam kaitannya dengan respon dari mikrofilaria terhadap rangsangan eksternal, terutama terhadap cahaya. Masuya (1976) mencatat autofluorescence menyebar dan banyak butiran neon di tubuh mikrofilaria spesies yang sangat aktif di malam hari seperti W. bancrofti [15]. Butiran ini tidak ditemukan pada spesies non-periodik (Setaria, Onehocerea, dll). Perbandingan distribusi dan jumlah butiran autofluorescent di spesimen mikrofilaria di 21 strain dari 13 spesies yang dikumpulkan dari seluruh dunia mengungkapkan paralelisme perkiraan antara pola periodisitas dan kepadatan butiran autofluorescent. Disimpulkan bahwa butiran bertindak sebagai fotoreseptor bertanggung jawab atas fototaksis negatif mikrofilaria. Mikrofilaria W. bancrofti telah dilaporkan menunjukkan fototaksis negatif (Suganuma 1921) [9]. Kelompok Masuya ini kimia menganalisis butiran bancrofti W. nokturnal dan menemukan bahwa mereka mengandung vitamin A dan zat karotenoid. 1.3 Pengaruh dietltyicarbamazine pada periodisitas mikrofilaria Berbagai obat telah dilaporkan untuk mengerahkan efek pada microfilaria menghitung atau periodisitas mikrofilaria. Dietilkarbamazin (DEC) memiliki efek yang signifikan pada siklus sirkadian dari mikrofilaria (Katamine et al., 1952) [16]. Pemberian dosis kecil Desember (0,02-0,1 g) diinduksi kenaikan langsung dalam hitungan microfilaria pada siang hari. Desember diinduksi tertinggi hitungan 5-15 menit setelah pemberian oral Desember dan mengubah siklus didefinisikan sirkadian dari mikrofilaria (Tamura 1954; Iwamoto, 1971) [17, 18]. Berdasarkan temuan ini, kenaikan Desember diinduksi dalam hitungan microfilaria digunakan untuk diagnosis filariasis bancroftian pada siang hari (DEC uji provokasi). Meskipun banyak temuan eksperimental yang signifikan yang dikumpulkan oleh parasitologists Jepang, mekanisme periodisitas mikrofilaria tetap tidak diketahui. Ada ulasan Katamine (1970), Katamine (1972) dan Masuya (1993) [19-21]. Di luar Jepang, "teori penghalang oksigen" diusulkan oleh Hawking (1975), yang menemukan bahwa mikrofilaria mengalir keluar dari penghalang kapiler paru ke darah perifer ketika perbedaan pO2 antara arteri pulmonalis dan vena menurun ke bawah 55 mmHg [22] . Pergi ke: 2 studi imunologi Studi imunologis dilakukan di Jepang mencakup berbagai subjek penelitian. Fujita et al. (1983) [23] dan Tajima dkk. (1983) [24] menemukan fakta menarik bahwa prevalensi dewasa leukemia sel T (ATL) adalah geografis sangat mirip dengan filariasis bancroftian di Jepang. Mereka menunjukkan hubungan erat antara titer antibodi anti-filaria dan anti-ATL titer virus di daerah endemik filariasis. Sato (1991) mengusulkan hipotesis bahwa infeksi filaria merangsang pembesaran dari IL-2 reseptor pada sel T [25]. Penelitian ekstensif tentang modulasi filaria yang disebabkan reaksi imunologi tuan dilakukan oleh Fujita dan rekan-rekannya. Sejak kertas mereka diterbitkan dalam jurnal internasional, kertas-kertas tidak dalam artikel ini. Beberapa parasitologists ditangani dengan mekanisme pembunuhan mikrofilaria dan kekebalan protektif terhadap infeksi filaria. Kobayakawa dkk. (1974) menekankan peran limfosit peka dalam pembunuhan mikrofilaria menggunakan Litomosoides carinii katun Model tikus [26]. In vitro studi sitotoksisitas mereka mengungkapkan tingginya angka kematian mikrofilaria berbudaya dengan adanya sel-sel eksudat peritoneal peka. Studi difusi ruang menunjukkan bahwa sel-sel eksudat limpa dan peritoneal peka memiliki aktivitas microfilaricidal cukup tinggi Hayashi et al. (1984a, 1984b) meneliti pengaruh vaksinasi dengan radiasi-dilemahkan larva infektif dari Brugia malayi dan B. pahangi pada BALB tikus / c [27, 28]. Tikus divaksinasi menunjukkan penurunan 33,8-99,5% pada cacing pulih pada infeksi tantangan dibandingkan dengan kontrol, dan transfer pasif kekebalan protektif dengan serum dan / atau sel limpa dari tikus divaksinasi dengan tikus normal berhasil. Selain itu, Tanaka (1986) berhasil dalam produksi antibodi monoklonal yang menghasilkan penurunan yang signifikan microfilaria pada tikus dan dipromosikan dalam kepatuhan vitro sel limpa tikus normal mikrofilaria [29]. Hayashi et al. (1984c) menekankan peran sistem mononuklear fagosit (MPS) di pembukaan Desember diinduksi mikrofilaria dalam carinii katun Model tikus L.. Izin Desember-dimediasi mikrofilaria itu sangat ditingkatkan dengan aktivasi MPS dan tertekan oleh blokade MPS [30]. Pergi ke: hubungan tuan 3 Parasit-menengah Telah universal diakui bahwa mikrofilaria exsheath di midgut dan menyerang otot dada nyamuk dan bahwa tingkat exsheathed mikrofilaria di midgut memiliki hubungan dekat dengan kerentanan nyamuk parasit filarial. Parasitologists Jepang telah mengklarifikasi fakta signifikan dalam kaitannya dengan exsheathment mikrofilaria, invasi mikrofilaria ke dalam otot dan kerentanan nyamuk. Aoki (1971a, 1971b) mencatat fakta bahwa mikrofilaria W. bancrofti exsheath in vitro pada bekuan darah atau plate agar [31, 32]. Ketika mikrofilaria ditempatkan pada agar-agar atau gumpalan, mereka segera mulai bergerak dalam sarungnya, melanggar ujung anterior dari sarungnya dan menyelesaikan exsheathment tersebut. Pengamatan ini sangat menyarankan bahwa exsheathment mikrofilaria dalam midgut nyamuk dipicu ketika gerakan mikrofilaria yang sangat dibatasi oleh pembentukan bekuan darah. Yamamoto et al. (1983) melaporkan bahwa banyak mikrofilaria berselubung melewati dinding midgut dan menyerang otot [33]. Eksperimen tambahan mereka mengungkapkan bahwa larva berselubung berturut-turut dikembangkan untuk larva infektif ketika mereka artifisial diinokulasi ke dalam otot nyamuk. Yamamoto et al. (1985) dan Kobayashi et al. (1986) melaporkan bahwa kerentanan nyamuk filaria cacing berhubungan langsung dengan melanisasi atau enkapsulasi mikrofilaria dalam otot nyamuk [34, 35]. Ketika B. mikrofilaria malayi yang dicerna oleh Armigeres subalbatus, sebagian besar dari mereka mengalami melanisasi. Ketika B. mikrofilaria pahangi yang dicerna oleh spesies yang sama nyamuk, mereka tidak dikemas dan berturut-turut dikembangkan untuk infektif larva. Kobayashi et al. (1991) merancang metode in vitro dimana melanisasi mikrofilaria itu kuantitatif diuji, dan mereka mengungkapkan bahwa B. malayi mikrofilaria exsheathed dengan mudah dikemas dengan hemolymph A. subalbatus, sementara hanya beberapa exsheathed B. pahangi yang dikemas [36 .] Pergi ke: 4 Modus aksi dietilkarbamazin Modus tindakan dari Desember adalah subjek penelitian yang telah menantang banyak parasitologists Jepang selama bertahun-tahun. Koran-koran dikutip dalam ulasan ini menggambarkan hasil yang menarik mengenai cara kerja dari Desember Namun, makalah ini telah sebagian besar tanpa diketahui di luar Jepang, karena mereka diterbitkan dalam bahasa Jepang. Fujimaki (1956, 1958) meneliti konsentrasi serum Desember pada pasien di














































Sedang diterjemahkan, harap tunggu..
 
Bahasa lainnya
Dukungan alat penerjemahan: Afrikans, Albania, Amhara, Arab, Armenia, Azerbaijan, Bahasa Indonesia, Basque, Belanda, Belarussia, Bengali, Bosnia, Bulgaria, Burma, Cebuano, Ceko, Chichewa, China, Cina Tradisional, Denmark, Deteksi bahasa, Esperanto, Estonia, Farsi, Finlandia, Frisia, Gaelig, Gaelik Skotlandia, Galisia, Georgia, Gujarati, Hausa, Hawaii, Hindi, Hmong, Ibrani, Igbo, Inggris, Islan, Italia, Jawa, Jepang, Jerman, Kannada, Katala, Kazak, Khmer, Kinyarwanda, Kirghiz, Klingon, Korea, Korsika, Kreol Haiti, Kroat, Kurdi, Laos, Latin, Latvia, Lituania, Luksemburg, Magyar, Makedonia, Malagasi, Malayalam, Malta, Maori, Marathi, Melayu, Mongol, Nepal, Norsk, Odia (Oriya), Pashto, Polandia, Portugis, Prancis, Punjabi, Rumania, Rusia, Samoa, Serb, Sesotho, Shona, Sindhi, Sinhala, Slovakia, Slovenia, Somali, Spanyol, Sunda, Swahili, Swensk, Tagalog, Tajik, Tamil, Tatar, Telugu, Thai, Turki, Turkmen, Ukraina, Urdu, Uyghur, Uzbek, Vietnam, Wales, Xhosa, Yiddi, Yoruba, Yunani, Zulu, Bahasa terjemahan.

Copyright ©2024 I Love Translation. All reserved.

E-mail: