European Journal of Clinical Nutrition (2003) 57, Suppl 2, S6–S9& 2003 terjemahan - European Journal of Clinical Nutrition (2003) 57, Suppl 2, S6–S9& 2003 Bahasa Indonesia Bagaimana mengatakan

European Journal of Clinical Nutrit

European Journal of Clinical Nutrition (2003) 57, Suppl 2, S6–S9
& 2003 Nature Publishing Group All rights reserved 0954-3007/03 $25.00
www.nature.com/ejcn


ORIGINAL COMM UNICATION

Markers of hydration status

SM Shirreffs1*

1School of Sport and Exercise Sciences, Loughborough University, Leicestershire, UK


Many indices have been investigated to establish their potential as markers of hydration status. Body mass changes, blood indices, urine indices and bioelectrical impedance analysis have been the most widely investigated. The current evidence and opinion tend to favour urine indices, and in particular urine osmolality, as the most promising marker available.
European Journal of Clinical Nutrition (2003) 57, Suppl 2, S6 – S9. doi:10.1038/sj.ejcn.1601895

Keywords: hydration status; water balance; euhydration; hypohydration




Hydration status—some definitions
Euhydration is the state or situation of being in water balance. However, although the dictionary definition is an easy one, establishing the physiological definition is not so simple. Hyperhydration is a state of being in positive water balance (a water excess) and hypohydration the state of being in negative water balance (a water deficit). Dehydration is the process of losing water from the body and rehydration the process of gaining body water. Euhydration, however, is not a steady state, but rather is a dynamic state in that we continually lose water from the body and there may be a time delay before replacing it or we may take in a slight excess and then lose this (Greenleaf, 1992).


Water intake and loss
The routes of water loss from the body are the urinary system via the kidney, the respiratory system via the lungs and respiratory tract, via the skin, even when not visibly sweating, and the gastrointestinal system as faeces or vomit. The routes of water gain into the body are gastrointestinally from food and drink consumption and due to metabolic production. Many textbooks, both recent and older, state water gain and loss figures for the average sedentary adult in a moderate environment in the order of 2550 ml (McArdle et al, 1996), 2600 ml (Astrand & Rodahl, 1986) and 2500 ml (Diem, 1962). However, it is interesting to note that the source of this data is never given.


*Correspondence: SM Shirreffs, School of Sport and Exercise Sciences, Loughborough University, Leicestershire LE11 3TU, UK.
E-mail: s.shirreffs@lboro.ac.uk
Guarantor: SM Shirreffs.
Measurement of total body water
The body water content of an individual can be measured or estimated in a number of ways, but the current consensus is that tracer methodology gives the best measure of total body water. Deuterium oxide (D2O or 2H2O) is the most commonly used tracer for this purpose and full details of the methods and protocols, assumptions and limitations are well discussed elsewhere (Schoeller, 1996). Briefly, the tracers are distributed relatively rapidly in the body (in the order of
3–4 h for an oral dose) and correction can be made for exchange with nonaqueous hydrogen. It is estimated that total body water can be measured with a precision and accuracy of 1–2%.



Assessing hydration status
Hydration status has been attempted to be assessed in a variety of situations for a number of years. In 1975, Grant and Kubo divided the tests open to use in a clinical setting into three categories: laboratory tests, objective noninvasive measurements and subjective observations. The laboratory tests were measures of serum osmolality and sodium concentration, blood urea nitrogen, haematocrit and urine osmolality. The objective, noninvasive measurements in- cluded body mass, intake and output measurements, stool number and consistency and ‘vital signs’, for example, temperature, heart rate and respiratory rate. The subjective observations were skin turgor, thirst and mucous membrane moisture. This manuscript concluded that, although the subjective measurements were least reliable, in terms of consistency of measurement between measurers, they were the simplest, fastest and most economical. The laboratory tests were deemed to be the most accurate means to assess a




patient’s hydration status. Since this manuscript was pub- lished, there has been a large amount of research into some of these measurements, observations and tests, and some of the main ones, along with others, are discussed in the rest of this paper.


Body mass
Acute changes in body mass over a short time period can frequently be assumed to be due to body water loss or gain; 1 ml of water has a mass of 1 g (Lentner, 1981) and therefore changes in body mass can be used to quantify water gain or loss. Over a short time period, no other body component will be lost at such a rate, making this assumption possible.
Throughout the exercise literature, changes in body mass over a period of exercise have been used as the main method of quantifying body water losses or gains due to sweating and drinking. Indeed, this method is frequently used as the method to which other methods are compared. Respiratory water loss and water exchange due to substrate oxidation are sometimes calculated and used to correct the sweat loss values, but this is not always done (Mitchell et al, 1972). Examples of such types of calculations are shown in Table 1.


Blood indices
Collection of a blood sample for subsequent analysis has been both investigated and used as a hydration status marker. Measurement of haemoglobin concentration and haemato- crit has the potential to be used as a marker of hydration status or change in hydration status, provided a reliable baseline can be established. In this regard, standardisation of posture for a time prior to blood collection is necessary to distinguish between postural changes in blood volume, and therefore in haemoglobin concentration and haematocrit, which occur
(Harrison, 1985) and change due to water loss or gain. Plasma or serum sodium concentration and osmolality
will increase when the water loss inducing dehydration is hypotonic with respect to plasma. An increase in these concentrations would be expected, therefore, in many cases of hypohydration, including water loss by sweat
Markers of hydration status
SM Shirreffs
S7
secretion, urine production or diarrhoea. However, in subjects studied by Francesconi et al (1987), who lost more than 3% of their body mass mainly through sweating, no change in haematocrit or serum osmolality was found, although as described below certain urine parameters did show changes. Similar findings to this were reported by Armstrong et al (1994, 1998). This perhaps suggests that plasma volume is defended in an attempt to maintain cardiovascular stability, and so plasma variables will not be affected by hypohydration until a certain degree of body water loss has occurred.
Plasma testosterone, adrenaline and cortisol concentra- tions were reported by Hoffman et al (1994) not to be influenced by hypohydration to the extent of a body mass loss of up to 5.1% induced by exercise in the heat. In contrast, however, plasma noradrenaline concentration did respond to the hydration changes, which means that it may be possible to use this as a marker of hydration status, at least when induced by exercise in the heat.


Urine indices
Collection of a urine sample for subsequent analysis has also been investigated and used as a hydration status marker.
Measurement of urine osmolality has recently been an extensively studied parameter as a possible hydration status marker. In studies of fluid restriction, urine osmolality has increased to values greater than 900 mosm/kg for the first urine of the day passed in individuals dehydrated by 1.9% of their body mass, as determined by body mass changes (Shirreffs & Maughan, 1998). Armstrong et al (1994) have determined that measures of urine osmolality can be used interchangeably with urine-specific gravity, opening this as another potential marker.
Urine colour is determined by the amount of urochrome present in it (Diem, 1962). When large volumes of urine are excreted, the urine is dilute and the solutes are excreted in a large volume. This generally gives the urine a very pale colour. When small volumes of urine are excreted, the urine is concentrated and the solutes are excreted in a small volume. This generally gives the urine a dark colour. Armstrong et al (1998) have investigated the relationship


Table 1 Examples of hydration status calculations



Exercise
Pre-exercise Body massa (kg)
Post-exercise Body massa (kg)
Total body mass loss or gaind
(ml or g)
Drinks consumed during exerciseb (ml)
Urine excreted during exercisec (ml)

Sweat volume
(ml)

Hydration statusd
(%)

60 min Running 70.00 68.00 2000 0 200 1800 2.9
3 h Walking 70.00 70.00 0 500 400 100 0.0
2 h Cycling 70.0 0 70.20 þ 200 1000 0 800 þ 0.3

aBody mass measured nude with dry skin.
bDrinks consumed any time between the two bod
0/5000
Dari: -
Ke: -
Hasil (Bahasa Indonesia) 1: [Salinan]
Disalin!
European Journal of Clinical Nutrition (2003) 57, d 2, S6 – S9& 2003 alam Publishing Group semua hak dilindungi 0954-3007/03 $25,00www.Nature.com/ejcnASLI COMM UNICATION Penanda status hidrasiSM Shirreffs1 *1School olahraga dan latihan Sciences, Universitas Loughborough, Leicestershire, InggrisBanyak indeks telah menyelidiki membangun potensi mereka sebagai penanda status hidrasi. Perubahan massa tubuh, darah indeks, urin indeks dan Analisis Impedansi bioelectrical telah paling banyak diinvestigasi. Bukti saat ini dan pendapat cenderung mendukung indeks urin, dan di osmolalitas urin tertentu, sebagai yang paling menjanjikan penanda tersedia.European Journal of Clinical Nutrition (2003) 57, d 2, S6 – S9. Doi:10.1038/SJ.ejcn.1601895Kata kunci: status hidrasi; keseimbangan air; euhydration; hypohydrationStatus hidrasi — beberapa definisiEuhydration is the state or situation of being in water balance. However, although the dictionary definition is an easy one, establishing the physiological definition is not so simple. Hyperhydration is a state of being in positive water balance (a water excess) and hypohydration the state of being in negative water balance (a water deficit). Dehydration is the process of losing water from the body and rehydration the process of gaining body water. Euhydration, however, is not a steady state, but rather is a dynamic state in that we continually lose water from the body and there may be a time delay before replacing it or we may take in a slight excess and then lose this (Greenleaf, 1992).Water intake and lossThe routes of water loss from the body are the urinary system via the kidney, the respiratory system via the lungs and respiratory tract, via the skin, even when not visibly sweating, and the gastrointestinal system as faeces or vomit. The routes of water gain into the body are gastrointestinally from food and drink consumption and due to metabolic production. Many textbooks, both recent and older, state water gain and loss figures for the average sedentary adult in a moderate environment in the order of 2550 ml (McArdle et al, 1996), 2600 ml (Astrand & Rodahl, 1986) and 2500 ml (Diem, 1962). However, it is interesting to note that the source of this data is never given.*Correspondence: SM Shirreffs, School of Sport and Exercise Sciences, Loughborough University, Leicestershire LE11 3TU, UK.E-mail: s.shirreffs@lboro.ac.ukGuarantor: SM Shirreffs.Measurement of total body waterThe body water content of an individual can be measured or estimated in a number of ways, but the current consensus is that tracer methodology gives the best measure of total body water. Deuterium oxide (D2O or 2H2O) is the most commonly used tracer for this purpose and full details of the methods and protocols, assumptions and limitations are well discussed elsewhere (Schoeller, 1996). Briefly, the tracers are distributed relatively rapidly in the body (in the order of3–4 h for an oral dose) and correction can be made for exchange with nonaqueous hydrogen. It is estimated that total body water can be measured with a precision and accuracy of 1–2%.Assessing hydration statusHydration status has been attempted to be assessed in a variety of situations for a number of years. In 1975, Grant and Kubo divided the tests open to use in a clinical setting into three categories: laboratory tests, objective noninvasive measurements and subjective observations. The laboratory tests were measures of serum osmolality and sodium concentration, blood urea nitrogen, haematocrit and urine osmolality. The objective, noninvasive measurements in- cluded body mass, intake and output measurements, stool number and consistency and ‘vital signs’, for example, temperature, heart rate and respiratory rate. The subjective observations were skin turgor, thirst and mucous membrane moisture. This manuscript concluded that, although the subjective measurements were least reliable, in terms of consistency of measurement between measurers, they were the simplest, fastest and most economical. The laboratory tests were deemed to be the most accurate means to assess a



patient’s hydration status. Since this manuscript was pub- lished, there has been a large amount of research into some of these measurements, observations and tests, and some of the main ones, along with others, are discussed in the rest of this paper.


Body mass
Acute changes in body mass over a short time period can frequently be assumed to be due to body water loss or gain; 1 ml of water has a mass of 1 g (Lentner, 1981) and therefore changes in body mass can be used to quantify water gain or loss. Over a short time period, no other body component will be lost at such a rate, making this assumption possible.
Throughout the exercise literature, changes in body mass over a period of exercise have been used as the main method of quantifying body water losses or gains due to sweating and drinking. Indeed, this method is frequently used as the method to which other methods are compared. Respiratory water loss and water exchange due to substrate oxidation are sometimes calculated and used to correct the sweat loss values, but this is not always done (Mitchell et al, 1972). Examples of such types of calculations are shown in Table 1.


Blood indices
Collection of a blood sample for subsequent analysis has been both investigated and used as a hydration status marker. Measurement of haemoglobin concentration and haemato- crit has the potential to be used as a marker of hydration status or change in hydration status, provided a reliable baseline can be established. In this regard, standardisation of posture for a time prior to blood collection is necessary to distinguish between postural changes in blood volume, and therefore in haemoglobin concentration and haematocrit, which occur
(Harrison, 1985) and change due to water loss or gain. Plasma or serum sodium concentration and osmolality
will increase when the water loss inducing dehydration is hypotonic with respect to plasma. An increase in these concentrations would be expected, therefore, in many cases of hypohydration, including water loss by sweat
Markers of hydration status
SM Shirreffs
S7
secretion, urine production or diarrhoea. However, in subjects studied by Francesconi et al (1987), who lost more than 3% of their body mass mainly through sweating, no change in haematocrit or serum osmolality was found, although as described below certain urine parameters did show changes. Similar findings to this were reported by Armstrong et al (1994, 1998). This perhaps suggests that plasma volume is defended in an attempt to maintain cardiovascular stability, and so plasma variables will not be affected by hypohydration until a certain degree of body water loss has occurred.
Plasma testosterone, adrenaline and cortisol concentra- tions were reported by Hoffman et al (1994) not to be influenced by hypohydration to the extent of a body mass loss of up to 5.1% induced by exercise in the heat. In contrast, however, plasma noradrenaline concentration did respond to the hydration changes, which means that it may be possible to use this as a marker of hydration status, at least when induced by exercise in the heat.


Urine indices
Collection of a urine sample for subsequent analysis has also been investigated and used as a hydration status marker.
Measurement of urine osmolality has recently been an extensively studied parameter as a possible hydration status marker. In studies of fluid restriction, urine osmolality has increased to values greater than 900 mosm/kg for the first urine of the day passed in individuals dehydrated by 1.9% of their body mass, as determined by body mass changes (Shirreffs & Maughan, 1998). Armstrong et al (1994) have determined that measures of urine osmolality can be used interchangeably with urine-specific gravity, opening this as another potential marker.
Urine colour is determined by the amount of urochrome present in it (Diem, 1962). When large volumes of urine are excreted, the urine is dilute and the solutes are excreted in a large volume. This generally gives the urine a very pale colour. When small volumes of urine are excreted, the urine is concentrated and the solutes are excreted in a small volume. This generally gives the urine a dark colour. Armstrong et al (1998) have investigated the relationship


Table 1 Examples of hydration status calculations



Exercise
Pre-exercise Body massa (kg)
Post-exercise Body massa (kg)
Total body mass loss or gaind
(ml or g)
Drinks consumed during exerciseb (ml)
Urine excreted during exercisec (ml)

Sweat volume
(ml)

Hydration statusd
(%)

60 min Running 70.00 68.00 2000 0 200 1800 2.9
3 h Walking 70.00 70.00 0 500 400 100 0.0
2 h Cycling 70.0 0 70.20 þ 200 1000 0 800 þ 0.3

aBody mass measured nude with dry skin.
bDrinks consumed any time between the two bod
Sedang diterjemahkan, harap tunggu..
Hasil (Bahasa Indonesia) 2:[Salinan]
Disalin!
European Journal of Clinical Nutrition (2003) 57, Suppl 2, S6-S9
& 2003 Nature Publishing Group All rights reserved 0954-3007 / 03 $ 25,00
www.nature.com/ejcn


ORIGINAL COMM unication

Penanda status hidrasi

SM Shirreffs1 *

1School Olahraga dan Latihan Ilmu, Loughborough University, Leicestershire, UK


Banyak indeks telah diselidiki untuk membangun potensi mereka sebagai penanda status hidrasi. Perubahan massa tubuh, indeks darah, indeks urin dan analisis impedansi Bioelectrical telah menjadi yang paling banyak diteliti. Bukti dan opini saat ini cenderung mendukung indeks urin, dan osmolalitas urin tertentu, sebagai penanda yang paling menjanjikan tersedia.
European Journal of Clinical Nutrition (2003) 57, Suppl 2, S6 - S9. doi: 10.1038 / sj.ejcn.1601895

Keywords: status hidrasi; neraca air; euhydration; hypohydration




Hydration status beberapa definisi
Euhydration adalah keadaan atau situasi berada di neraca air. Namun, meskipun definisi kamus adalah mudah, membangun definisi fisiologis tidak begitu sederhana. Hiperhidrasi adalah suatu keadaan keseimbangan positif air (kelebihan air) dan hypohydration negara berada di neraca air negatif (defisit air). Dehidrasi adalah proses kehilangan air dari tubuh dan rehidrasi proses mendapatkan air tubuh. Euhydration, bagaimanapun, adalah bukan negara yang stabil, melainkan adalah negara yang dinamis dalam bahwa kita terus kehilangan air dari tubuh dan mungkin ada penundaan waktu sebelum menggantinya atau kita dapat mengambil sedikit kelebihan dan kemudian kehilangan ini (Greenleaf, 1992).


asupan air dan kehilangan
dari tubuh The rute kehilangan air adalah sistem kemih melalui ginjal, sistem pernapasan melalui paru-paru dan saluran pernapasan, melalui kulit, bahkan ketika tidak tampak berkeringat, dan sistem pencernaan sebagai feses atau muntahan. Ke dalam tubuh rute dari gain air gastrointestinally dari makanan dan minuman konsumsi dan karena produksi metabolik. Banyak buku teks, baik baru dan lebih tua, gain air negara dan tokoh-tokoh kerugian bagi orang dewasa menetap rata-rata di lingkungan moderat dalam urutan 2.550 ml (McArdle et al, 1996), 2.600 ml (Astrand & Rodahl, 1986) dan 2500 ml ( diem, 1962). Namun, menarik untuk dicatat bahwa sumber data ini tidak pernah diberikan.


* Korespondensi: SM Shirreffs, Sekolah Olahraga dan Ilmu Latihan, Loughborough University, Leicestershire LE11 3TU, UK.
E-mail: s.shirreffs@lboro.ac .uk
Penjamin:. SM Shirreffs
Pengukuran air tubuh total
kandungan air tubuh seseorang dapat diukur atau diperkirakan dalam beberapa cara, tetapi konsensus saat ini adalah bahwa metodologi pelacak memberikan ukuran terbaik dari air tubuh total. Deuterium oxide (D2O atau 2H2O) adalah pelacak yang paling umum digunakan untuk tujuan ini dan rincian lengkap metode dan protokol, asumsi dan keterbatasan baik dibahas di tempat lain (Schoeller, 1996). Secara singkat, pelacak didistribusikan relatif cepat dalam tubuh (dalam urutan
3-4 jam untuk dosis oral) dan koreksi dapat dibuat untuk pertukaran dengan hidrogen berair. Diperkirakan air tubuh total dapat diukur dengan presisi dan akurasi 1-2%.



Menilai status hidrasi
Status Hidrasi telah berusaha untuk dinilai dalam berbagai situasi selama beberapa tahun. Pada tahun 1975, Grant dan Kubo dibagi tes terbuka untuk digunakan dalam pengaturan klinis dalam tiga kategori: tes laboratorium, pengukuran noninvasif obyektif dan pengamatan subjektif. Tes laboratorium yang ukuran osmolalitas serum dan konsentrasi natrium, urea nitrogen darah, hematokrit dan osmolalitas urin. Tujuannya, pengukuran noninvasif di- massa tubuh menyimpulkan, asupan dan output pengukuran, jumlah bangku dan konsistensi dan 'tanda-tanda vital', misalnya, suhu, denyut jantung dan laju pernapasan. Pengamatan subjektif yang turgor kulit, rasa haus dan kelembaban membran mukosa. Naskah ini menyimpulkan bahwa, meskipun pengukuran subjektif yang paling terpercaya, dalam hal konsistensi pengukuran antara pengukur, mereka adalah yang paling sederhana, paling cepat dan paling ekonomis. Tes laboratorium dianggap cara yang paling akurat untuk menilai




status hidrasi pasien. Karena naskah ini lished pub-, telah ada sejumlah besar penelitian beberapa pengukuran ini, pengamatan dan tes, dan beberapa yang utama, bersama dengan orang lain, dibahas dalam sisa kertas ini.


Tubuh massa
perubahan akut massa tubuh selama periode waktu yang singkat dapat sering diasumsikan karena tubuh kehilangan air atau keuntungan; 1 ml air memiliki massa 1 g (Lentner, 1981) dan karena itu perubahan dalam massa tubuh dapat digunakan untuk mengukur gain air atau rugi. Selama periode waktu yang singkat, tidak ada komponen tubuh lainnya akan hilang pada tingkat seperti itu, membuat asumsi ini mungkin.
Sepanjang literatur latihan, perubahan massa tubuh selama latihan telah digunakan sebagai metode utama mengukur kehilangan air tubuh atau keuntungan karena berkeringat dan minum. Memang, metode ini sering digunakan sebagai metode yang metode lain dibandingkan. Kehilangan air pernapasan dan pertukaran air karena substrat oksidasi kadang-kadang dihitung dan digunakan untuk memperbaiki nilai kerugian keringat, tapi ini tidak selalu dilakukan (Mitchell et al, 1972). Contoh jenis seperti perhitungan ditunjukkan pada Tabel 1.


indeks Darah
Koleksi sampel darah untuk analisis selanjutnya telah baik diteliti dan digunakan sebagai penanda status hidrasi. Pengukuran konsentrasi hemoglobin dan crit haemato- memiliki potensi untuk digunakan sebagai penanda status hidrasi atau perubahan status hidrasi, memberikan dasar yang dapat diandalkan dapat dibentuk. Dalam hal ini, standarisasi postur untuk waktu sebelum pengumpulan darah diperlukan untuk membedakan antara perubahan postural volume darah, dan karena itu konsentrasi hemoglobin dan hematokrit, yang terjadi
(Harrison, 1985) dan berubah karena kehilangan air atau keuntungan. Plasma atau serum konsentrasi natrium dan osmolalitas
akan meningkat bila kehilangan air menginduksi dehidrasi adalah hipotonik sehubungan dengan plasma. Peningkatan konsentrasi ini akan diharapkan, oleh karena itu, dalam banyak kasus hypohydration, termasuk kehilangan air oleh keringat
Penanda status hidrasi
SM Shirreffs
S7
sekresi, produksi urin atau diare. Namun, dalam mata pelajaran dipelajari oleh Francesconi et al (1987), yang kehilangan lebih dari 3% dari massa tubuh mereka terutama melalui keringat, tidak ada perubahan dalam hematokrit atau serum osmolalitas ditemukan, meskipun seperti yang dijelaskan di bawah parameter urin tertentu memang menunjukkan perubahan. Temuan serupa dengan ini dilaporkan oleh Armstrong et al (1994, 1998). Hal ini mungkin menunjukkan bahwa volume plasma dipertahankan dalam upaya untuk menjaga stabilitas kardiovaskular, dan variabel plasma tidak akan terpengaruh oleh hypohydration sampai tingkat tertentu kehilangan air tubuh telah terjadi.
Testosteron plasma, adrenalin dan kortisol konsentrasi yang dilaporkan oleh Hoffman et al (1994) tidak dipengaruhi oleh hypohydration sampai sebatas kehilangan massa tubuh hingga 5,1% yang disebabkan oleh latihan di panas. Sebaliknya, bagaimanapun, konsentrasi noradrenalin plasma tidak menanggapi perubahan hidrasi, yang berarti bahwa dimungkinkan untuk menggunakan ini sebagai penanda status hidrasi, setidaknya ketika diinduksi oleh latihan di panas.


Indeks Urine
Koleksi sampel urine untuk analisis selanjutnya juga telah diteliti dan digunakan sebagai penanda status hidrasi.
Pengukuran osmolalitas urin baru-baru ini menjadi parameter dipelajari secara ekstensif sebagai mungkin penanda status hidrasi. Dalam studi pembatasan cairan, osmolalitas urin meningkat dengan nilai-nilai yang lebih besar dari 900 mosm / kg untuk urin pertama hari berlalu pada individu dehidrasi sebesar 1,9% dari massa tubuh mereka, seperti yang ditentukan oleh perubahan massa tubuh (Shirreffs & Maughan, 1998) . Armstrong et al (1994) telah menetapkan bahwa tindakan dari osmolalitas urine dapat digunakan secara bergantian dengan gravitasi urine-spesifik, membuka ini sebagai potensi penanda lain.
Warna Urine ditentukan oleh jumlah urochrome ada di dalamnya (Diem, 1962). Ketika volume besar urin yang diekskresikan, urin encer dan zat terlarut diekskresikan dalam volume besar. Ini umumnya memberikan urin warna yang sangat pucat. Ketika volume kecil dari urin diekskresikan, urin terkonsentrasi dan zat terlarut diekskresikan dalam volume kecil. Ini umumnya memberikan urin warna gelap. Armstrong et al (1998) telah menyelidiki hubungan


Tabel 1 Contoh perhitungan status hidrasi



Latihan
Pra-latihan tubuh massa (kg)
Post-latihan tubuh massa (kg)
Jumlah tubuh kehilangan massa atau gaind
(ml atau g)
Minuman dikonsumsi selama exerciseb ( ml)
Urine diekskresikan selama exercisec (ml)

Volume Sweat
(ml)

Hydration statusd
(%)

60 menit Menjalankan 70.00 68.00 2000 0 200 1800 2,9
3 h Berjalan 70.00 70.00 0 500 400 100 0,0
2 h Bersepeda 70,0 0 70.20 þ 200 1000 0 800 þ 0,3

massa aBody diukur telanjang dengan kulit kering.
bDrinks dikonsumsi setiap saat antara dua bod
Sedang diterjemahkan, harap tunggu..
 
Bahasa lainnya
Dukungan alat penerjemahan: Afrikans, Albania, Amhara, Arab, Armenia, Azerbaijan, Bahasa Indonesia, Basque, Belanda, Belarussia, Bengali, Bosnia, Bulgaria, Burma, Cebuano, Ceko, Chichewa, China, Cina Tradisional, Denmark, Deteksi bahasa, Esperanto, Estonia, Farsi, Finlandia, Frisia, Gaelig, Gaelik Skotlandia, Galisia, Georgia, Gujarati, Hausa, Hawaii, Hindi, Hmong, Ibrani, Igbo, Inggris, Islan, Italia, Jawa, Jepang, Jerman, Kannada, Katala, Kazak, Khmer, Kinyarwanda, Kirghiz, Klingon, Korea, Korsika, Kreol Haiti, Kroat, Kurdi, Laos, Latin, Latvia, Lituania, Luksemburg, Magyar, Makedonia, Malagasi, Malayalam, Malta, Maori, Marathi, Melayu, Mongol, Nepal, Norsk, Odia (Oriya), Pashto, Polandia, Portugis, Prancis, Punjabi, Rumania, Rusia, Samoa, Serb, Sesotho, Shona, Sindhi, Sinhala, Slovakia, Slovenia, Somali, Spanyol, Sunda, Swahili, Swensk, Tagalog, Tajik, Tamil, Tatar, Telugu, Thai, Turki, Turkmen, Ukraina, Urdu, Uyghur, Uzbek, Vietnam, Wales, Xhosa, Yiddi, Yoruba, Yunani, Zulu, Bahasa terjemahan.

Copyright ©2025 I Love Translation. All reserved.

E-mail: