in liquid oil. There were no solids above 20C in coconut stearin(CSt2 terjemahan - in liquid oil. There were no solids above 20C in coconut stearin(CSt2 Bahasa Indonesia Bagaimana mengatakan

in liquid oil. There were no solids

in liquid oil. There were no solids above 20C in coconut stearin
(CSt2). However, the solids content increased on increasing the
palm stearin content (Fig. 1). The blends containing 30% and
40% palm stearin (experimental blends) were found to have a
wider melting range required for plastic fats and the melting
profiles were comparable with the commercial bakery shortening
(Fig. 1). At lower temperatures (5–20C), these blends showed a
solids content similar to commercial bakery fat, while in the
middle melting region (25–35C), it was slightly lower (7.5–
13.4%). An SFC of 15–25% at the temperature of working is desirable for better creaming performance in cakes (Danthine & Deroanne, 2003). At 40C, a higher solids content (5.6–9.1%) was
observed for the experimental blends and is advantageous for
use in cake manufacture as they can retain the air incorporated
during baking (Nor Aini, Embong, Abdullah, & Oh, 1992). The
blends containing 50% and higher percentage of palm stearin
also had a wide melting range (Fig. 1), but were not suitable
as plastic fats, as they contained too high-solids (15.2–29.4%)
at body temperature (37.5C) and would leave a waxy mouthfeel (Mayamol et al., 2004).
3.4. FTIR spectroscopy
FTIR spectroscopy is a rapid analytical technique that measures
the vibrations of bonds within functional groups. Thetransabsorption region is 995–937 cm
1
with a peak at 966 cm
1
(Sedman,
Vande Voort, & Ismail, 1997). Hydrogenated fats show a characteristic peak at 966 cm
1
for TFA, which can be detected at 0.2% level
and quantified at 1.0% level (Mossoba, Yurawecz, & McDonald,
1996). The commercial fat sample (Fig. 2A) showed a distinct peak
at 966 cm
1
, indicating the presence of TFA while the experimental
blend did not show the peak (Fig. 2B) confirming the absence of
Table 2
Fatty acid composition (%) of coconut oil, palm oil, stearins
a
and the blends
b
Samples 8:0 10:0 12:0 14:0 16:0 18:0 18:1 18:2
Coconut oil 8.5 ± 0.5 6.0 ± 0.2 47.3 ± 0.8 17.9 ± 0.5 9.6 ± 0.1 0.7 ± 0.1 6.8 ± 0.4 2.4 ± 0.2
CSt1
a
7.2 ± 0.8 6.0 ± 0.5 51.7 ± 1.2 20.2 ± 1.4 7.7 ± 0.4 1.0 ± 0.1 4.3 ± 0.2 1.7 ± 0.2
CSt2
a
8.0 ± 0.6 5.9 ± 0.4 48.0 ± 1.1 18.7 ± 0.7 8.4 ± 0.5 0.5 ± 0.1 5.6 ± 0.3 2.1 ± 0.1
Palm oil ND ND 0.1 ± 0 1.0 ± 0.2 51.0 ± 1.3 1.6 ± 0.1 35.1 ± 1.8 11.1 ± 0.6
Palm stearin ND ND 7.2 ± 0.6 2.1 ± 0.1 62.0 ± 1.6 2.0 ± 0.1 19.6 ± 0.5 6.0 ± 0.1
Bl 2
b
5.9 ± 0.1 5.4 ± 0.1 46.6 ± 1.5 16.4 ± 0.6 14.5 ± 0.5 1.1 ± 0.2 6.3 ± 0.1 2.3 ± 0.1
Bl 3
b
5.1 ± 0.4 4.8 ± 0.6 42.4 ± 1.8 15.6 ± 1.2 19.8 ± 0.9 1.3 ± 0.6 7.8 ± 0.4 2.8 ± 0.2
Bl 4
b
4.2 ± 0.1 4.0 ± 0.2 38.8 ± 1.4 14.2 ± 0.6 25.1 ± 0.8 1.4 ± 0.2 8.7 ± 0.6 3.1 ± 0.1
Bl 5
b
3.7 ± 0.1 3.5 ± 0.2 32.7 ± 1.4 13.3 ± 0.6 29.8 ± 1.4 1.5 ± 0.2 11.2 ± 0.6 3.4 ± 0.6
Bl 6
b
3.2 ± 0.4 2.8 ± 0.6 25.0 ± 1.2 10.0 ± 0.5 36.1 ± 1.8 1.8 ± 0.6 15.6 ± 1.2 4.2 ± 0.1
Bl 8
b
2.6 ± 0.2 1.9 ± 0.4 16.8 ± 0.6 7.6 ± 0.4 45.8 ± 1.7 2.0 ± 0.1 17.8 ± 0.6 4.9 ± 0.2
Values are mean ± S.D (n= 3); ND, not detected.
a
CSt1 and CSt2: coconut stearin of 40% and 60% yield.
b
Bl 2, 3, 4, 5, 6 and 8: CSt2 blended with 20%, 30%, 40%, 50%, 60% and 80% palm stearin, respectively.
Table 3
Triacylglycerol (TAG) composition (%) of coconut oil (CNO), palm oil (PO) and the blends
TAG species
c
ECN
d
CNO CSt2
a
PO Palm stearin Bl 2
b
Bl 4
b
Bl 5
b
Bl 6
b
Bl 8
b
CpCLa 30 0.2 ± 0 1.5 ± 0.2 ND ND 1.9 ± 0.1 0.8 ± 0.1 0.6 ± 0.1 0.2 ± 0 0.2 ± 0
CCLa 32 8.2 ± 0.4 11.5 ± 0.6 ND ND 10.1 ± 0.6 1.8 ± 0.2 1.1 ± 0.1 1.2 ± 0.1 1.6 ± 0.2
CLaLa 34 16.8 ± 1.2 17.0 ± 1.2 ND ND 14.5 ± 1.0 6.1 ± 0.4 5.1 ± 0.3 4.4 ± 0.4 2.9 ± 0.1
LaLaLa 36 26.0 ± 0.8 23.4 ± 1.3 ND ND 18.4 ± 1.0 13.6 ± 0.8 10.4 ± 0.7 7.8 ± 0.2 3.7 ± 0.2
LaLaM 38 24.4 ± 0.9 20.8 ± 0.7 ND ND 15.2 ± 0.8 13.4 ± 0.6 10.4 ± 0.7 7.5 ± 0.4 3.3 ± 0.1
LaLaO 38 0.5 ± 0.1 ND ND ND 0.2 ± 0 ND 0.1 ± 0 ND 0.6 ± 0.2
LaMM 42 8.9 ± 0.4 16.5 ± 0.8 ND ND 4.8 ± 0.2 3.1 ± 0.1 1.6 ± 0.1 1.4 ± 0.2 1.9 ± 0.2
LaMO 42 2.0 ± 0.1 0.5 ± 0.1 ND ND 0.7 ± 0.2 0.3 ± 0 0.3 ± 0 0.1 ± 0 0.1 ± 0
LaMP 42 6.7 ± 0.2 3.5 ± 0.1 ND ND 2.6 ± 0.1 2.3 ± 0.1 3.1 ± 0.2 1.3 ± 0.1 0.3 ± 0.2
MMM 42 ND ND 0.7 ± 0.1 0.2 ± 0 ND ND ND ND ND
MPL 44 ND ND 3.9 ± 0.1 1.6 ± 0.1 ND ND ND ND ND
MOO 46 1.9 ± 0.2 0.8±0.1 ND ND ND 0.3 ± 0.1 ND ND ND
OOL 46 ND ND 0.3 ± 0.1 0.1 ± 0 0.7 ± 0.1 0.6 ± 0.1 0.3 ± 0 0.2 ± 0 0.2 ± 0
MPO 46 2.8 ± 0.2 1.9 ± 0.2 ND ND ND ND ND ND ND
MMP 46 ND ND 2.3 ± 0.2 1.0 ± 0.1 2.1 ± 0.2 1.2 ± 0.1 0.4 ± 0 0.3 ± 0 1.5 ± 0.3
PLO 46 0.8 ± 0.2 0.4 ± 0.1 14.2 ± 0.8 6.9 ± 0.6 2.7 ± 0.2 4.8 ± 0.4 3.0 ± 0.2 4.2 ± 0.2 7.6 ± 0.8
PPL 46 0.7 ± 0.1 0.8 ± 0.2 12.0 ± 0.9 6.8 ± 0.5 2.9 ± 0.1 5.3 ± 0.3 4.2 ± 0.1 5.4 ± 0.2 7.5 ± 0.8
OOO 48 ND ND 1.7 ± 0.1 2.6 ± 0.2 1.8 ± 0.1 0.9 ± 0.1 2.5 ± 0.2 3.8 ± 0.2 3.8 ± 0.4
POO 48 ND ND 18.8 ± 0.6 11.7 ± 0.5 5.0 ± 0.2 10.0 ± 0.6 10.0 ± 0.8 14.3 ± 0.8 13.9 ± 0.6
POP 48 ND ND 28.7 ± 1.0 24.4 ± 1.2 7.5 ± 0.2 17.2 ± 0.8 18.8 ± 0.9 22.4 ± 1.0 23.0 ± 1.2
PPP 48 ND ND 4.6 ± 0.2 26.3 ± 0.6 5.5 ± 0.1 10.5 ± 0.8 17.1 ± 1.0 16.0 ± 0.8 18.2 ± 0.8
SOO 50 ND ND 3.9 ± 0.1 1.1 ± 0.1 ND 0.9 ± 0.1 0.5 ± 0 0.3 ± 0 0.3 ± 0
POS 50 ND ND 8.2 ± 0.3 6.5 ± 0.2 1.4 ± 0.1 4.0 ± 0.2 4.8 ± 0.3 4.6 ± 0.4 4.5 ± 0.3
SOS 50 ND ND 1.0 ± 0.1 7.8 ± 0.4 1.5 ± 0.1 3.0 ± 0.2 4.9 ± 0.2 4.4 ± 0.1 3.6 ± 0.1
Values are mean ± SD (n= 3); ND, not detected.
a,b
For abbreviations seeTable 2.
c
Cp, caprylic; C, capric; La, lauric; M, myristic; P, palmitic; S, stearic; L, linoleic; O, oleic acids.
d
ECN, equivalent carbon number of the triglyceride which is equal to carbon number – 2n(nis the number of double bonds in the fatty acids).
T. Jeyarani et al. / Food Chemistry 114 (2009) 270–275 273
any TFA. While analyzing various commercial hydrogenated fats,
bakery shortenings designed for puff, cake and biscuit were found
to contain 17.5–28.9% TFA (Jeyarani, 2006).
3.5. Fatty acid composition
Table 2shows the fatty acid composition of the oils, stearins
and the blends. Coconut oil contained 8.5% caprylic (C8), 6% capric
(C10) and 47.3% lauric acid and the palm oil contained 51.7% palmitic acid (Table 2). Lauric acid and palmitic acid contents were
higher in the stearins, compared to coconut oil and palm oil,
respectively (Table 2). Palmitic acid has no adverse effect on serum
lipoprotein profiles, in the presence of a sufficient amount of essential fatty acids from dietary intake (Clandinin, Cook, Konrad, Goh, &
French, 1999).
The blends containing 30% and 40% palm stearin, which showed
melting profiles similar to commercial bakery shortening, were
found to contain 19.8–25.1% palmitic acid and 38.8–42.4% lauric
acid (Table 2). It is reported that the palmitic acid content was
above 17% inb’ tending margarines and below 11% in btending
margarines (D’Souza, deMan, & deMan, 1991). Thus the experimental blends favour theb’ polymorph desirable for plastic fats
and also are rich in medium-chain fatty acids.
3.6. Triglyceride composition
Bakery products require fats having wide melting range, which
is achieved by using fats containing heterogeneous type triglycerides. In the blends studied, there was a wide distribution of lower
and higher molecular weight triglycerides (Table 3andFig. 3). The
blend containing 40% palm stearin (Bl 4) contained 41.4% triglycerides having medium-chain fatty acids (ECN 32–46) and 58.6% highmelting triglycerides with ECN 48 and 50 (Table 3). Fats containing
both medium and long-chain fatty acids, because of the fairly complex packing at the molecular level, produce smaller crystals and
are more suitable as plastic fats (Floter & Van Duijn, 2006).
4. Conclusion
Coconut oil and palm oil were subjected to dry fractionation to
get coconut stearin of 40% and 60% yield and palm stearin of 13.8%
yield. Various blends were prepared using these stearins and were
found to have slip melting points ranging from 25.9C to 49.6C.
The blends containing 60% and 70% coconut stearin had the wider
melting range required for plastic fats and the melting profiles
were comparable with that of a commercial bakery shortening.
These blends contained 47–52.3% medium-chain fatty acids which
are reported to have various health benefits. Thus, MCT-richtransfree plastic fat suitable for use in bakery products can be prepared
utilising coconut oil.
0/5000
Dari: -
Ke: -
Hasil (Bahasa Indonesia) 1: [Salinan]
Disalin!
dalam minyak cair. Ada tidak ada padatan di atas 20 C di kelapa stearin(CSt2). Namun, isi padatan meningkat pada peningkatanPalm stearin konten (Fig. 1). Campuran yang mengandung 30% dan40% palm stearin (eksperimental campuran) ditemukan memilikilebih luas mencair berbagai diperlukan untuk plastik lemak dan pencairanprofil yang sebanding dengan memperpendek toko roti komersial(Fig. 1). Pada suhu yang rendah (5 – 20 C), campuran ini menunjukkanisi padatan mirip dengan lemak toko roti komersial, sementara diwilayah tengah mencair (25-35 C), itu adalah sedikit lebih rendah (7,5-13.4%). SFC 15 – 25% pada suhu kerja diinginkan untuk lebih baik kream kinerja dalam kue (Danthine & Deroanne, 2003). Pada 40 C, kandungan padatan lebih tinggi (5.6-9,1%) adalahdiamati untuk percobaan campuran dan menguntungkan bagimenggunakan dalam pembuatan kue karena mereka dapat mempertahankan udara dimasukkanselama baking (Nor Aini, Embong, Abdullah & Oh, 1992). Thecampuran yang mengandung 50% dan persentase lebih tinggi dari palm stearinjuga memiliki rentang lebar mencair (Fig. 1), tetapi tidak cocoklemak seperti plastik, seperti yang mereka mengandung terlalu tinggi-padatan (15.2 – 29.4%)pada suhu tubuh (37.5 C) dan akan meninggalkan mouthfeel lilin (Mayamol et al., 2004).3.4. FTIR spektroskopiFTIR spektroskopi adalah teknik analisis cepat yang mengukurgetaran ikatan dalam kelompok-kelompok fungsional. Thetransabsorption wilayah adalah 995-937 cm1dengan puncaknya 966 cm1(Sedman,Vande Voort, & Ismail, 1997). Hidrogenasi lemak menunjukkan karakteristik puncak 966 cm1untuk TFA, yang dapat mendeteksi tingkat 0,2%dan diukur tingkat 1,0% (Mossoba, Yurawecz, & McDonald,1996). sampel lemak komersial (Fig. 2A) menunjukkan puncak berbeda966 cm1, mengindikasikan adanya TFA sementara percobaancampuran tidak menunjukkan puncak (Fig. 2B) membenarkan tidak adanyaTabel 2Komposisi asam lemak (%) dari minyak kelapa, kelapa sawit, stearinsadan campuranbSampel 8:0 10:0 12:0 14:0 16:0 18:0 18:1 18:2Minyak kelapa 8.5 0.5 6.0 ± 0,2 47.3 ± 0.8 17,9 ± 0,5 9.6 ± 0.1 0.7 ± 0.1 6.8 ± 0.4 2.4 ± 0,2CSt1a7.2 0.8 6.0 ± 0,5 51,7 ± 1.2 20.2 ± 1.4 7,7 ± 0.4 1.0 ± 0.1 4.3 ± 0,2 1,7 ± 0,2CSt2a8.0 0.6 5.9 ± 0.4 48.0 ± 1.1 18.7 ± 0.7 8.4 ± 0,5 0.5 ± 0.1 5.6 ± 0.3 2.1 ± 0.1Palm oil ND ND 0.1 0 1.0 ± 0,2 51.0 ± 1.3 1.6 ± 0.1 35,1 1.8 11.1 ± 0.6Palm stearin ND ND 7.2 0.6 2.1 ± 0.1 62,0 ± 1.6 2.0 ± 0.1 19,6 ± 0,5 6.0 ± 0.1BL 2b5.9 0.1 5.4 ± 0.1 46,6 ± 1,5 16,4 ± 0.6 14.5 ± 0,5 1.1 ± 0,2 6.3 ± 0.1 2.3 ± 0.1BL 3b5.1 0.4 4.8 ± 0.6 42.4 ± 1.8 15.6 ± 1.2 19,8 ± 0.9 1.3 ± 7,8 0.6 ± 0.4 2.8 ± 0,2BL 4b4.2 ± 0.1 4.0 ± 0,2 38.8 ± 1.4 14.2 ± 0.6 25,1 ± 0.8 1.4 ± 0,2 8.7 ± 0.6 3.1 ± 0.1BL 5b3.7 0.1 3.5 ± 32. 7 0.2 ± 1.4 13.3 ± 0.6 29.8 ± 1,5 1.4 ± 0,2 11,2 ± 0.6 3.4 ± 0.6BL 6b3.2 0.4 2.8 ± 0.6 25.0 ± 1.2 10,0 ± 0,5 36,1 ± 1.8 1,8 ± 0.6 15.6 ± 1.2 4.2 ± 0.1BL 8b2.6 0.2 1.9 ± 0.4 16,8 ± 0.6 7,6 ± 0.4 45.8 ± 1.7 2.0 ± 0.1 17,8 ± 0.6 4.9 ± 0,2Nilai-nilai yang berarti ± S.D (n = 3); ND, tidak terdeteksi.aCSt1 dan CSt2: kelapa stearin hasil 40% dan 60%.bBL 2, 3, 4, 5, 6 dan 8: CSt2 dicampur dengan 20%, 30%, 40%, 50%, 60% dan stearin palm 80%, masing-masing.Tabel 3Triacylglycerol (TAG) komposisi (%) dari minyak kelapa (CNO), minyak sawit (PO) dan campuranTAG spesiescECNdCNO CSt2aPO Palm stearin Bl 2bBL 4bBL 5bBL 6bBL 8bCpCLa 30 0.2 ± 1,5 0 ± 0,2 ND ND 1,9 ± 0.1 0.8 ± 0.1 0,6 ± 0,2 0.1 ± ± 0,2 0 0CCLa 32 8.2 ± 0.4 11,5 ± 0,6 ND ND 10.1 0.6 1,8 ± 0,2 1.1 ± 0.1 1.2 ± 0.1 1.6 ± 0,2CLaLa 34 16,8 ± 1.2 17,0 ± 1.2 ND ND 14.5 1.0 6.1 ± 0.4 5.1 ± 0.3 4.4 ± 0.4 2.9 ± 0.1LaLaLa 36 26.0 ± 0.8 23,4 ± 1.3 ND ND 18,4 1.0 13.6 ± 0.8 10.4 ± 0.7 7,8 ± 0,2 3.7 ± 0,2LaLaM 38 24.4 ± 0.9 20,8 ± 0.7 ND ND 15,2 0.8 13.4 ± 0.6 10.4 ± 0.7 7,5 ± 0.4 3.3 ± 0.1LaLaO 38 0,5 ± 0.1 ND ND ND 0.2 ± 0 ND 0.1 ± 0 ND 0,6 ± 0,2LaMM ± 42 8.9 0.4 16.5 ± 0.8 ND ND 4.8 0.2 3.1 ± 0.1 1.6 ± 0.1 1.4 ± 0,2 1,9 ± 0,2Lamido 42 2.0 ± 0.1 0,5 ± 0.1 ND ND 0.7 ± 0.2 0.3 ± 0 0.3 ± 0 0.1 ± ± 0, 1 0 0Lampu 42 6.7 ± 3,5 0.2 ± 0.1 ND ND 2.6 ± 0.1 2.3 ± 0.1 3.1 ± 0,2 1.3 ± 0.1 0.3 ± 0,2MMM 42 ND ND 0.7 ± 0,2 0.1 ± 0 ND ND ND ND NDMPL 44 ND ND 3.9 ± 0.1 1.6 ± 0.1 ND ND ND ND NDMOO 46 1,9 ± 0,2 0.8±0.1 ND ND ND 0.3 ± 0.1 ND ND NDOOL 46 ND ND 0.3 ± 0.1 0.1 ± 0 0.7 ± 0.1 0.6 ± 0.1 0.3 ± 0 0.2 ± 0 0.2 ± 0MPO 46 2.8 ± 0.2 1.9 ± 0.2 ND ND ND ND ND ND NDMMP 46 ND ND 2.3 ± 0.2 1.0 ± 0.1 2.1 ± 0.2 1.2 ± 0.1 0.4 ± 0 0.3 ± 0 1.5 ± 0.3PLO 46 0.8 ± 0.2 0.4 ± 0.1 14.2 ± 0.8 6.9 ± 0.6 2.7 ± 0.2 4.8 ± 0.4 3.0 ± 0.2 4.2 ± 0.2 7.6 ± 0.8PPL 46 0.7 ± 0.1 0.8 ± 0.2 12.0 ± 0.9 6.8 ± 0.5 2.9 ± 0.1 5.3 ± 0.3 4.2 ± 0.1 5.4 ± 0.2 7.5 ± 0.8OOO 48 ND ND 1.7 ± 0.1 2.6 ± 0.2 1.8 ± 0.1 0.9 ± 0.1 2.5 ± 0.2 3.8 ± 0.2 3.8 ± 0.4POO 48 ND ND 18.8 ± 0.6 11.7 ± 0.5 5.0 ± 0.2 10.0 ± 0.6 10.0 ± 0.8 14.3 ± 0.8 13.9 ± 0.6POP 48 ND ND 28.7 ± 1.0 24.4 ± 1.2 7.5 ± 0.2 17.2 ± 0.8 18.8 ± 0.9 22.4 ± 1.0 23.0 ± 1.2PPP 48 ND ND 4.6 ± 0.2 26.3 ± 0.6 5.5 ± 0.1 10.5 ± 0.8 17.1 ± 1.0 16.0 ± 0.8 18.2 ± 0.8SOO 50 ND ND 3.9 ± 0.1 1.1 ± 0.1 ND 0.9 ± 0.1 0.5 ± 0 0.3 ± 0 0.3 ± 0POS 50 ND ND 8.2 ± 0.3 6.5 ± 0.2 1.4 ± 0.1 4.0 ± 0.2 4.8 ± 0.3 4.6 ± 0.4 4.5 ± 0.3SOS 50 ND ND 1.0 ± 0.1 7.8 ± 0.4 1.5 ± 0.1 3.0 ± 0.2 4.9 ± 0.2 4.4 ± 0.1 3.6 ± 0.1Values are mean ± SD (n= 3); ND, not detected.a,bFor abbreviations seeTable 2.cCp, caprylic; C, capric; La, lauric; M, myristic; P, palmitic; S, stearic; L, linoleic; O, oleic acids.dECN, equivalent carbon number of the triglyceride which is equal to carbon number – 2n(nis the number of double bonds in the fatty acids).T. Jeyarani et al. / Food Chemistry 114 (2009) 270–275 273any TFA. While analyzing various commercial hydrogenated fats,bakery shortenings designed for puff, cake and biscuit were foundto contain 17.5–28.9% TFA (Jeyarani, 2006).3.5. Fatty acid compositionTable 2shows the fatty acid composition of the oils, stearinsand the blends. Coconut oil contained 8.5% caprylic (C8), 6% capric(C10) and 47.3% lauric acid and the palm oil contained 51.7% palmitic acid (Table 2). Lauric acid and palmitic acid contents werehigher in the stearins, compared to coconut oil and palm oil,respectively (Table 2). Palmitic acid has no adverse effect on serumlipoprotein profiles, in the presence of a sufficient amount of essential fatty acids from dietary intake (Clandinin, Cook, Konrad, Goh, &French, 1999).The blends containing 30% and 40% palm stearin, which showedmelting profiles similar to commercial bakery shortening, werefound to contain 19.8–25.1% palmitic acid and 38.8–42.4% lauricacid (Table 2). It is reported that the palmitic acid content wasabove 17% inb’ tending margarines and below 11% in btendingmargarines (D’Souza, deMan, & deMan, 1991). Thus the experimental blends favour theb’ polymorph desirable for plastic fatsand also are rich in medium-chain fatty acids.3.6. Triglyceride compositionBakery products require fats having wide melting range, whichis achieved by using fats containing heterogeneous type triglycerides. In the blends studied, there was a wide distribution of lowerand higher molecular weight triglycerides (Table 3andFig. 3). Theblend containing 40% palm stearin (Bl 4) contained 41.4% triglycerides having medium-chain fatty acids (ECN 32–46) and 58.6% highmelting triglycerides with ECN 48 and 50 (Table 3). Fats containingboth medium and long-chain fatty acids, because of the fairly complex packing at the molecular level, produce smaller crystals andare more suitable as plastic fats (Floter & Van Duijn, 2006).4. ConclusionCoconut oil and palm oil were subjected to dry fractionation toget coconut stearin of 40% and 60% yield and palm stearin of 13.8%yield. Various blends were prepared using these stearins and werefound to have slip melting points ranging from 25.9C to 49.6C.The blends containing 60% and 70% coconut stearin had the widermelting range required for plastic fats and the melting profileswere comparable with that of a commercial bakery shortening.These blends contained 47–52.3% medium-chain fatty acids whichare reported to have various health benefits. Thus, MCT-richtransfree plastic fat suitable for use in bakery products can be preparedutilising coconut oil.
Sedang diterjemahkan, harap tunggu..
 
Bahasa lainnya
Dukungan alat penerjemahan: Afrikans, Albania, Amhara, Arab, Armenia, Azerbaijan, Bahasa Indonesia, Basque, Belanda, Belarussia, Bengali, Bosnia, Bulgaria, Burma, Cebuano, Ceko, Chichewa, China, Cina Tradisional, Denmark, Deteksi bahasa, Esperanto, Estonia, Farsi, Finlandia, Frisia, Gaelig, Gaelik Skotlandia, Galisia, Georgia, Gujarati, Hausa, Hawaii, Hindi, Hmong, Ibrani, Igbo, Inggris, Islan, Italia, Jawa, Jepang, Jerman, Kannada, Katala, Kazak, Khmer, Kinyarwanda, Kirghiz, Klingon, Korea, Korsika, Kreol Haiti, Kroat, Kurdi, Laos, Latin, Latvia, Lituania, Luksemburg, Magyar, Makedonia, Malagasi, Malayalam, Malta, Maori, Marathi, Melayu, Mongol, Nepal, Norsk, Odia (Oriya), Pashto, Polandia, Portugis, Prancis, Punjabi, Rumania, Rusia, Samoa, Serb, Sesotho, Shona, Sindhi, Sinhala, Slovakia, Slovenia, Somali, Spanyol, Sunda, Swahili, Swensk, Tagalog, Tajik, Tamil, Tatar, Telugu, Thai, Turki, Turkmen, Ukraina, Urdu, Uyghur, Uzbek, Vietnam, Wales, Xhosa, Yiddi, Yoruba, Yunani, Zulu, Bahasa terjemahan.

Copyright ©2024 I Love Translation. All reserved.

E-mail: