the enzyme against trioctanoin. Repeated use of the immobilized lipase terjemahan - the enzyme against trioctanoin. Repeated use of the immobilized lipase Bahasa Indonesia Bagaimana mengatakan

the enzyme against trioctanoin. Rep

the enzyme against trioctanoin. Repeated use of the immobilized lipase over a period of 3
weeks reduced its esterifying capacity by only 18% (Hiol et al., 2000). Over the same period,
the hydrolyzing activity of the enzyme decreased by 80%.
For immobilization by adsorption on polymer membranes, hydrophobic membranes tend
to load much more lipase than the hydrophilic membranes (Bouwer et al., 1997); however,
at least for the hydrolytic reaction, the lipase immobilized on hydrophilic membranes
generally appears to be much more active than the enzyme adsorbed on hydrophobic
membranes (Bouwer et al., 1997). Use of hollow fiber and flat membrane reactors for
biotransformations with immobilized lipases has been reported extensively (Balca ˜o et al.,
1996; Bouwer et al., 1997; Giorno et al., 1995, 1997; Guit et al., 1991; Malcata et al., 1991,
1992b; Xu et al., 2000; Xin et al., 2001). Also, packed bed lipase bioreactors have been used
(Xu et al., 2001).
10. Sequencing and cloning of lipase gene
Early work on sequencing and cloning of lipase genes was discussed by Alberghina et al.
(1991) and this subject continues to attract attention. Lipase genes from many microorganisms
and a higher animals have been cloned. The structural lipase gene from a gene library of Aci. calcoaceticus BD413 DNAwas cloned in Escherichia coli phage M13 by Kok et al. (1995). The sequence analysis of 2.1-kb chromosomal DNA fragment revealed one complete open reading frame, lip A, encoding a mature protein with a predicted molecular mass of 32.1 kDa. A recombinant plasmid expressing the alkaline lipase of P. aeruginosa IGB83 under the tac promoter was constructed by Leza et al. (1996). The plasmid was then cloned in Xanthomonas campestris, which efficiently produced and secreted the alkaline lipase. An optimization of culture conditions of recombinant X. campestris led to a 12-fold increase in lipase production relative to initial results in shake flasks (Leza et al., 1996). Cloning of a lipase from Rhizop. oryzae DSM 853 has been reported (Beer et al., 1998). Apparently, the different lipase forms of Rhizopus sp. described in the literature result from different proteolytic processing and originate from the same gene. Epitope mapping studies using monoclonal antibodies directed against human pancreatic lipase (HPL) and various mutant lipases suggest that the beta 50 loop from C-terminal domain may be involved in the interaction of HPL with a lipid/water interface (Bezzine et al., 1998).
The dimorphic yeast C. rugosa has an unusual codon usage that interferes with the functional expression of genes derived from this yeast in conventional heterologous hosts. CRL occurs in several different isoforms encoded by the lip gene family (Brocca et al., 1998).
Of these lipases, the isoforms encoded by the gene lip 1 is the most abundant (Brocca et al.,
1998). The lip 1 gene (1647 bp) was completely synthesized with an optimized nucleotide
sequence to simplify genetic manipulation and allow heterologous expression in yeast
(Brocca et al., 1998). The synthetic gene was functionally overexpressed in Pi. pastoris,
allowing for the production of the specific isoform recombinant lipase at a level of 150 U/mL
in the culture medium. The physiochemical and catalytic properties of the recombinant lipase
0/5000
Dari: -
Ke: -
Hasil (Bahasa Indonesia) 1: [Salinan]
Disalin!
the enzyme against trioctanoin. Repeated use of the immobilized lipase over a period of 3
weeks reduced its esterifying capacity by only 18% (Hiol et al., 2000). Over the same period,
the hydrolyzing activity of the enzyme decreased by 80%.
For immobilization by adsorption on polymer membranes, hydrophobic membranes tend
to load much more lipase than the hydrophilic membranes (Bouwer et al., 1997); however,
at least for the hydrolytic reaction, the lipase immobilized on hydrophilic membranes
generally appears to be much more active than the enzyme adsorbed on hydrophobic
membranes (Bouwer et al., 1997). Use of hollow fiber and flat membrane reactors for
biotransformations with immobilized lipases has been reported extensively (Balca ˜o et al.,
1996; Bouwer et al., 1997; Giorno et al., 1995, 1997; Guit et al., 1991; Malcata et al., 1991,
1992b; Xu et al., 2000; Xin et al., 2001). Also, packed bed lipase bioreactors have been used
(Xu et al., 2001).
10. Sequencing and cloning of lipase gene
Early work on sequencing and cloning of lipase genes was discussed by Alberghina et al.
(1991) and this subject continues to attract attention. Lipase genes from many microorganisms
and a higher animals have been cloned. The structural lipase gene from a gene library of Aci. calcoaceticus BD413 DNAwas cloned in Escherichia coli phage M13 by Kok et al. (1995). The sequence analysis of 2.1-kb chromosomal DNA fragment revealed one complete open reading frame, lip A, encoding a mature protein with a predicted molecular mass of 32.1 kDa. A recombinant plasmid expressing the alkaline lipase of P. aeruginosa IGB83 under the tac promoter was constructed by Leza et al. (1996). The plasmid was then cloned in Xanthomonas campestris, which efficiently produced and secreted the alkaline lipase. An optimization of culture conditions of recombinant X. campestris led to a 12-fold increase in lipase production relative to initial results in shake flasks (Leza et al., 1996). Cloning of a lipase from Rhizop. oryzae DSM 853 has been reported (Beer et al., 1998). Apparently, the different lipase forms of Rhizopus sp. described in the literature result from different proteolytic processing and originate from the same gene. Epitope mapping studies using monoclonal antibodies directed against human pancreatic lipase (HPL) and various mutant lipases suggest that the beta 50 loop from C-terminal domain may be involved in the interaction of HPL with a lipid/water interface (Bezzine et al., 1998).
The dimorphic yeast C. rugosa has an unusual codon usage that interferes with the functional expression of genes derived from this yeast in conventional heterologous hosts. CRL occurs in several different isoforms encoded by the lip gene family (Brocca et al., 1998).
Of these lipases, the isoforms encoded by the gene lip 1 is the most abundant (Brocca et al.,
1998). The lip 1 gene (1647 bp) was completely synthesized with an optimized nucleotide
sequence to simplify genetic manipulation and allow heterologous expression in yeast
(Brocca et al., 1998). The synthetic gene was functionally overexpressed in Pi. pastoris,
allowing for the production of the specific isoform recombinant lipase at a level of 150 U/mL
in the culture medium. The physiochemical and catalytic properties of the recombinant lipase
Sedang diterjemahkan, harap tunggu..
Hasil (Bahasa Indonesia) 2:[Salinan]
Disalin!
enzim terhadap trioctanoin. Penggunaan berulang lipase amobil selama 3
minggu mengurangi kapasitas esterifying oleh hanya 18% (Hiol et al., 2000). Selama periode yang sama,
aktivitas hidrolisis enzim menurun 80%.
Untuk imobilisasi dengan adsorpsi pada membran polimer, membran hidrofobik cenderung
untuk memuat lebih banyak lipase dari membran hidrofilik (Bouwer et al, 1997.); Namun,
setidaknya untuk reaksi hidrolitik, lipase amobil pada membran hidrofilik
umumnya tampaknya jauh lebih aktif dari enzim diserap pada hidrofobik
membran (Bouwer et al., 1997). Penggunaan reaktor serat berongga dan membran datar untuk
biotransformations dengan lipase amobil telah dilaporkan secara luas (Balca ~o et al,.
1996; Bouwer et al, 1997;. Giorno et al, 1995, 1997;. Guit et al., 1991; . Malcata et al, 1991,
1992b; Xu et al, 2000;.. Xin et al, 2001). Juga, dikemas tidur bioreaktor lipase telah digunakan
(Xu et al., 2001).
10. Sequencing dan kloning gen lipase
Awal bekerja pada sequencing dan kloning gen lipase dibahas oleh Alberghina et al.
(1991) dan hal ini terus menarik perhatian. Gen lipase dari banyak mikroorganisme
dan hewan tingkat tinggi telah dikloning. Gen lipase struktural dari perpustakaan gen dari Aci. calcoaceticus BD413 DNAwas kloning pada Escherichia coli fag M13 oleh Kok et al. (1995). Analisis urutan fragmen 2.1-kb DNA kromosom mengungkapkan satu lengkap kerangka baca terbuka, bibir A, pengkodean protein matang dengan massa molekul prediksi 32,1 kDa. Sebuah plasmid rekombinan mengekspresikan lipase alkali dari P. aeruginosa IGB83 bawah promotor tac dibangun oleh Leza et al. (1996). Plasmid ini kemudian dikloning di Xanthomonas campestris, yang efisien diproduksi dan disekresikan lipase alkali. Optimasi kondisi budaya rekombinan X. campestris menyebabkan peningkatan 12 kali lipat dalam produksi lipase relatif terhadap hasil awal dalam termos goyang (Leza et al., 1996). Kloning dari lipase dari Rhizop. oryzae DSM 853 telah dilaporkan (Beer et al., 1998). Ternyata, bentuk lipase yang berbeda dari Rhizopus sp. dijelaskan dalam hasil sastra dari pengolahan proteolitik yang berbeda dan berasal dari gen yang sama. Studi pemetaan epitop menggunakan antibodi monoklonal yang ditujukan terhadap lipase pankreas manusia (HPL) dan berbagai lipase mutan menunjukkan bahwa beta 50 loop dari domain C-terminal mungkin terlibat dalam interaksi HPL dengan lipid / antarmuka air (Bezzine et al., 1998 ).
The dimorfik ragi C. rugosa memiliki penggunaan kodon yang tidak biasa yang mengganggu ekspresi fungsional gen yang berasal dari ragi ini di host heterolog konvensional. CRL terjadi di beberapa isoform berbeda dikodekan oleh keluarga gen bibir (Brocca et al., 1998).
Dari lipase ini, isoform dikodekan oleh gen bibir 1 adalah yang paling melimpah (Brocca et al.,
1998). Bibir 1 gen (1647 bp) benar-benar disintesis dengan nukleotida dioptimalkan
urutan untuk menyederhanakan manipulasi genetik dan memungkinkan ekspresi heterolog dalam ragi
(Brocca et al., 1998). Gen sintetik yang fungsional diekspresikan dalam Pi. pastoris,
yang memungkinkan untuk produksi lipase rekombinan isoform spesifik pada tingkat 150 U / mL
dalam media kultur. Sifat physiochemical dan katalitik lipase rekombinan
Sedang diterjemahkan, harap tunggu..
 
Bahasa lainnya
Dukungan alat penerjemahan: Afrikans, Albania, Amhara, Arab, Armenia, Azerbaijan, Bahasa Indonesia, Basque, Belanda, Belarussia, Bengali, Bosnia, Bulgaria, Burma, Cebuano, Ceko, Chichewa, China, Cina Tradisional, Denmark, Deteksi bahasa, Esperanto, Estonia, Farsi, Finlandia, Frisia, Gaelig, Gaelik Skotlandia, Galisia, Georgia, Gujarati, Hausa, Hawaii, Hindi, Hmong, Ibrani, Igbo, Inggris, Islan, Italia, Jawa, Jepang, Jerman, Kannada, Katala, Kazak, Khmer, Kinyarwanda, Kirghiz, Klingon, Korea, Korsika, Kreol Haiti, Kroat, Kurdi, Laos, Latin, Latvia, Lituania, Luksemburg, Magyar, Makedonia, Malagasi, Malayalam, Malta, Maori, Marathi, Melayu, Mongol, Nepal, Norsk, Odia (Oriya), Pashto, Polandia, Portugis, Prancis, Punjabi, Rumania, Rusia, Samoa, Serb, Sesotho, Shona, Sindhi, Sinhala, Slovakia, Slovenia, Somali, Spanyol, Sunda, Swahili, Swensk, Tagalog, Tajik, Tamil, Tatar, Telugu, Thai, Turki, Turkmen, Ukraina, Urdu, Uyghur, Uzbek, Vietnam, Wales, Xhosa, Yiddi, Yoruba, Yunani, Zulu, Bahasa terjemahan.

Copyright ©2025 I Love Translation. All reserved.

E-mail: