Earth's rotationFrom Wikipedia, the free encyclopediaFor the duration  terjemahan - Earth's rotationFrom Wikipedia, the free encyclopediaFor the duration  Bahasa Indonesia Bagaimana mengatakan

Earth's rotationFrom Wikipedia, the

Earth's rotation
From Wikipedia, the free encyclopedia
For the duration of daylight and night, see Daylight.
An animation showing the rotation of the Earth around its own axis.
Southern night sky over the Residencia “hotel” at ESO’s Paranal Observatory in Chile.[1]

Earth's rotation is the rotation of the solid Earth around its own axis. The Earth rotates from the west towards the east. As viewed from the North Star or polestar Polaris, the Earth turns counter-clockwise.

The North Pole, also known as the Geographic North Pole or Terrestrial North Pole, is the point in the Northern Hemisphere where the Earth's axis of rotation meets its surface. This point is distinct from the Earth's North Magnetic Pole. The South Pole is the other point where the Earth's axis of rotation intersects its surface, in Antarctica.

The Earth rotates once in about 24 hours with respect to the sun and once every 23 hours 56 minutes and 4 seconds with respect to the stars (see below). Earth's rotation is slowing slightly with time; thus, a day was shorter in the past. This is due to the tidal effects the Moon has on Earth's rotation. Atomic clocks show that a modern day is longer by about 1.7 milliseconds than a century ago,[2] slowly increasing the rate at which UTC is adjusted by leap seconds.

Contents

1 History
1.1 Empirical tests
2 Rotation period
2.1 True solar day
2.2 Mean solar day
2.3 Stellar and sidereal day
2.4 Angular speed
3 Changes in rotation
3.1 Measurement
4 Origin
5 See also
6 Notes
7 References
8 External links

History

Among the ancient Greeks, several of the Pythagorean school believed in the rotation of the earth rather than the apparent diurnal rotation of the heavens. The first was Philolaus (470-385 BCE) though his system was complicated, including a counter-earth rotating daily about a central fire.[3]

A more conventional picture was that supported by Hicetas, Heraclides and Ecphantus in the fourth century BCE who assumed that the earth rotated but did not suggest that the earth revolved about the sun. In the third century BCE, Aristarchus of Samos suggested the sun's central place.

However, Aristotle in the fourth century criticized the ideas of Philolaus as being based on theory rather than observation. He established the idea of a sphere of fixed stars that rotated about the earth.[4] This was accepted by most of those who came after, in particular Claudius Ptolemy (2nd century CE), who thought the earth would be devastated by gales if it rotated.[5]

In 499 CE, the Indian astronomer Aryabhata wrote that the spherical earth rotates about its axis daily, and that the apparent movement of the stars is a relative motion caused by the rotation of the earth. He provided the following analogy: "Just as a man in a boat going in one direction sees the stationary things on the bank as moving in the opposite direction, in the same way to a man at Lanka the fixed stars appear to be going westward."[6][7]

In the Middle Ages, Thomas Aquinas accepted Aristotle's view[8] and so, reluctantly, did John Buridan[9] and Nicole Oresme[10] in the fourteenth century. Not until Nicolaus Copernicus in 1543 adopted a heliocentric world system did the earth's rotation begin to be established. Copernicus pointed out that if the movement of the earth is violent, then the movement of the stars must be very much more so. He acknowledged the contribution of the Pythagoreans and pointed to examples of relative motion. For Copernicus this was the first step in establishing the simpler pattern of planets circling a central sun.[11]

This was not accepted immediately even by many astronomers due to the widespread conformance to Aristotle and the Bible. Tycho Brahe, who produced accurate observations on which Kepler based his laws, used Copernicus's work as the basis of a system assuming a stationary earth. In 1600, William Gilbert strongly supported the earth's rotation in his treatise on the earth's magnetism[12] and thereby influenced many of his contemporaries.[13] Those like Gilbert who did not openly support or reject the motion of the earth about the sun are often called "semi-Copernicans".[14] A century after Copernicus, Riccioli disputed the model of a rotating earth due to the lack of then-observable eastward deflections in falling bodies;[15] such deflections would later be called the Coriolis effect. However, the contributions of Kepler, Galileo and Newton gathered support for the theory of the rotation of the Earth.
Empirical tests

The earth's rotation implies that the equator bulges and the poles are flattened. In his Principia, Newton predicted this flattening would occur in the ratio of 1:230, and pointed to the 1673 pendulum measurements by Richer as corroboration of the change in gravity,[16] but initial measurements of meridian lengths by Picard and Cassini at the end of the 17th century suggested the opposite. However measurements by Maupertuis and the French Geodetic Mission in the 1730s established the flattening, thus confirming both Newton and the Copernican position.[17]

In the Earth's rotating frame of reference, a freely moving body follows an apparent path that deviates from the one it would follow in a fixed frame of reference. Because of this Coriolis effect, falling bodies veer slightly eastward from the vertical plumb line below their point of release, and projectiles veer right in the northern hemisphere (and left in the southern) from the direction in which they are shot. The Coriolis effect is mainly observable at a meteorological scale, where it is responsible for the differing rotation direction of cyclones in the northern and southern hemispheres.

Hooke, following a 1679 suggestion from Newton, tried unsuccessfully to verify the predicted eastward deviation of a body dropped from a height of 8.2 meters, but definitive results were only obtained later, in the late 18th and early 19th century, by Giovanni Battista Guglielmini in Bologna, Johann Friedrich Benzenberg in Hamburg and Ferdinand Reich in Freiberg, using taller towers and carefully released weights.[n 1] A ball dropped from a height of 158.5 m (520 ft) departed by 27.4 mm (1.08 in) from the vertical compared with a calculated value of 28.1 mm (1.11 in).

The most celebrated test of Earth's rotation is the Foucault pendulum first built by physicist Léon Foucault in 1851, which consisted of a lead-filled brass sphere suspended 67 m from the top of the Panthéon in Paris. Because of the Earth's rotation under the swinging pendulum, the pendulum's plane of oscillation appears to rotate at a rate depending on latitude. At the latitude of Paris the predicted and observed shift was about 11 degrees clockwise per hour. Foucault pendulums now swing in museums around the world.
Rotation period
A 3571 second exposure of the northern sky.
True solar day
Main article: Solar time

Earth's rotation period relative to the Sun (true noon to true noon) is its true solar day or apparent solar day. It depends on the Earth's orbital motion and is thus affected by changes in the eccentricity and inclination of Earth's orbit. Both vary over thousands of years so the annual variation of the true solar day also varies. Generally, it is longer than the mean solar day during two periods of the year and shorter during another two.[n 2] The true solar day tends to be longer near perihelion when the Sun apparently moves along the ecliptic through a greater angle than usual, taking about 10 seconds longer to do so. Conversely, it is about 10 seconds shorter near aphelion. It is about 20 seconds longer near a solstice when the projection of the Sun's apparent movement along the ecliptic onto the celestial equator causes the Sun to move through a greater angle than usual. Conversely, near an equinox the projection onto the equator is shorter by about 20 seconds. Currently, the perihelion and solstice effects combine to lengthen the true solar day near December 22 by 30 mean solar seconds, but the solstice effect is partially cancelled by the aphelion effect near June 19 when it is only 13 seconds longer. The effects of the equinoxes shorten it near March 26 and September 16 by 18 seconds and 21 seconds, respectively.[18][19][20]
Mean solar day
Main article: Solar time § Mean solar time

The average of the true solar day during the course of an entire year is the mean solar day, which contains 86,400 mean solar seconds. Currently, each of these seconds is slightly longer than an SI second because Earth's mean solar day is now slightly longer than it was during the 19th century due to tidal friction. The average length of the mean solar day since the introduction of the leap second in 1972 has been about 0 to 2 ms longer than 86,400 SI seconds.[21][22][23] Random fluctuations due to core-mantle coupling have an amplitude of about 5 ms.[24][25] The mean solar second between 1750 and 1892 was chosen in 1895 by Simon Newcomb as the independent unit of time in his Tables of the Sun. These tables were used to calculate the world's ephemerides between 1900 and 1983, so this second became known as the ephemeris second. In 1967 the SI second was made equal to the ephemeris second.[26]

The apparent solar time is a measure of the Earth's rotation and the difference between it and the mean solar time is known as the equation of time.
Stellar and sidereal day
On a prograde planet like the Earth, the stellar day is shorter than the solar day. At time 1, the Sun and a certain distant star are both overhead. At time 2, the planet has rotated 360° and the distant star is overhead again but the Sun is not (1→2 = one stellar day). It is not until a little later, at time 3, that the Sun is overhead again (1→3 = one solar day).

Earth's rotation period relative to the fixed stars, called its stellar day by the International Earth Rotation and Reference Systems Service (IERS), is 86,164.098 903 691 seconds
0/5000
Dari: -
Ke: -
Hasil (Bahasa Indonesia) 1: [Salinan]
Disalin!
Rotasi bumiDari Wikipedia bahasa Indonesia, ensiklopedia bebasUntuk durasi siang dan malam, lihat Daylight.Animasi menampilkan rotasi bumi di sekitar poros sendiri.Langit malam Selatan atas Residencia "hotel" di ESO's Paranal Observatory di Chili.[1]Rotasi bumi adalah rotasi bumi padat di sekitar poros sendiri. Bumi berputar dari Barat ke arah Timur. Dilihat dari bintang Utara atau polestar Polaris, bumi ternyata berlawanan arah jarum jam.Kutub Utara, juga dikenal sebagai geografis Kutub Utara atau terestrial Kutub Utara, adalah titik di belahan utara di mana bumi sumbu rotasi memenuhi permukaannya. Hal ini berbeda dari kutub magnet bumi utara. Kutub Selatan adalah titik lain dimana bumi sumbu rotasi bersimpangan permukaannya, di Antartika.Bumi berputar sekali di sekitar 24 jam berbanding matahari dan sekali setiap 5 jam 56 menit dan 4 detik sehubungan dengan bintang-bintang (lihat bawah). Rotasi bumi melambat sedikit dengan waktu; dengan demikian, hari adalah pendek di masa lalu. Hal ini disebabkan Efek pasang-surut yang bulan memiliki pada rotasi bumi. Jam atom menunjukkan bahwa hari modern oleh 1.7 milidetik lebih lama dari abad yang lalu, [2] perlahan-lahan meningkatkan tingkat di UTC yang disesuaikan dengan detik Kabisat.Isi 1 Sejarah 1.1 tes empiris 2 periode rotasi 2.1 hari matahari sejati 2.2 berarti hari matahari 2.3 bintang dan sideris hari 2.4 kecepatan sudut 3 perubahan dalam rotasi 3.1 pengukuran 4 asal 5 Lihat juga 6 Catatan 7 referensi 8 Pranala luarSejarahDitengah bangsa Yunani kuno, beberapa Sekolah Pythagorean percaya dalam rotasi bumi daripada rotasi diurnal jelas langit. Yang pertama adalah Philolaus (470-385 BCE) meskipun sistemnya rumit, termasuk bumi Counter yang berputar setiap hari tentang api pusat.[3]Gambaran yang lebih konvensional adalah bahwa didukung oleh Hicetas, Heraclides dan Ecphantus pada kurun yang keempat BCE yang diasumsikan bahwa bumi berputar tapi tidak menyarankan bahwa bumi berputar mengelilingi matahari. Pada abad ketiga BCE, usaha Aristarchus dari Samos menyarankan tempat sentral matahari.Namun, Aristoteles pada abad keempat mengkritik gagasan Philolaus sebagai yang didasarkan pada teori daripada pengamatan. Ia mendirikan ide bola tetap bintang-bintang yang diputar tentang bumi.[4] ini diterima oleh sebagian besar dari mereka yang datang setelah itu, di tertentu Claudius Ptolemy (abad ke-2 Masehi), yang berpikir bumi akan hancur oleh gales jika diputar.[5]Pada tahun 499 CE, astronom India Aryabhata menulis bahwa bumi berbentuk bola berputar tentang sumbu setiap hari, dan gerakan nyata dari bintang-bintang yang gerak relatif disebabkan oleh rotasi bumi. Dia menyediakan analogi berikut: "sama seperti seorang pria di perahu akan arah yang satu melihat hal-hal stasioner di bank sebagai bergerak dalam arah yang berlawanan, dengan cara yang sama dengan laki-laki di Lanka fixed bintang-bintang muncul untuk pergi ke Barat."[6][7]Di abad pertengahan, Thomas Aquinas tampilan Aristoteles [8] diterima dan Jadi, enggan, melakukan John Buridan [9] dan Nicole Oresme [10] dalam abad keempat belas. Tidak sampai Nicolaus Copernicus tahun 1543 mengadopsi sistem heliosentrik dunia melakukan rotasi bumi mulai didirikan. Copernicus menunjukkan bahwa jika gerakan bumi kekerasan, maka gerakan bintang harus sangat banyak lebih. Ia mengakui kontribusi Pythagorean dan menunjuk ke contoh gerak relatif. Bagi Copernicus ini adalah langkah pertama dalam membangun pola sederhana planet-planet yang mengitari matahari sentral.[11]Ini tidak diterima segera bahkan oleh para astronom banyak karena kesesuaian luas untuk Aristoteles dan Alkitab. Tycho Brahe, yang diproduksi akurat pengamatan yang Kepler didasarkan hukumnya, digunakan Copernicus's bekerja sebagai dasar dari sistem dengan asumsi bumi yang stasioner. Tahun 1600, William Gilbert sangat mendukung rotasi bumi dalam risalah-nya di bumi magnet [12] dan dengan demikian mempengaruhi banyak sezamannya.[13] mereka seperti Gilbert yang tidak secara terbuka mendukung atau menolak gerakan bumi mengelilingi matahari sering disebut "semi-Copernicans".[14] abad setelah Copernicus, Riccioli diperdebatkan model bumi berputar karena kurangnya kemudian-observable defleksi ke Timur di jatuh tubuh;[15] defleksi seperti yang kemudian disebut efek Coriolis. Namun, kontribusi Kepler, Galileo dan Newton mengumpulkan dukungan untuk teori rotasi bumi.Tes empirisRotasi bumi menyiratkan bahwa tonjolan khatulistiwa dan Polandia diratakan. Pada nya Principia, Newton meramalkan meratakan ini akan terjadi dalam rasio 1:230, dan menunjuk ke 1673 pendulum pengukuran oleh kaya sebagai kekeliruan perubahan dalam gravitasi, [16] tetapi awal pengukuran meridian panjang oleh Picard dan Cassini di akhir abad ke-17 menyarankan sebaliknya. Namun pengukuran oleh Maupertuis dan misi Geodetik Perancis di tahun 1730-an didirikan meratakan, dengan demikian mengkonfirmasi Newton dan posisi Kopernikus.[17]Di bumi berputar kerangka acuan, tubuh bebas bergerak mengikuti jalan yang jelas yang menyimpang dari yang satu ini akan mengikuti kerangka acuan tetap. Karena efek Coriolis ini, tubuh jatuh menyimpang sedikit ke Timur dari garis plumb vertikal di bawah mereka titik rilis, dan proyektil Membelok kanan di belahan bumi utara (dan yang tersisa di Selatan) dari arah di mana yang mereka menembak. Efek Coriolis adalah terutama observable pada skala Meteorologi, dimana hal ini bertanggung jawab untuk arah rotasi berbeda Siklon di belahan utara dan Selatan.Hooke, mengikuti saran 1679 dari Newton, gagal mencoba untuk memverifikasi deviasi Timur diperkirakan badan turun dari ketinggian 8,2 meter, tetapi hasil yang pasti hanya diperoleh kemudian, di 18 dan 19 abad ke, oleh Giovanni Battista Guglielmini di Bologna, Johann Friedrich Benzenberg di Hamburg dan Ferdinand Reich di Freiberg, menggunakan menara tinggi dan hati-hati dirilis beban.[n 1] Bola jatuh dari ketinggian 158.5 m (520 kaki) berangkat dengan 27.4 mm (1,08 in) dari vertikal dibandingkan dengan nilai yang dihitung 28.1 mm (1,11 in).Ujian paling dirayakan rotasi bumi adalah pendulum Foucault pertama dibangun oleh fisikawan Léon Foucault tahun 1851, yang terdiri dari sebuah bola penuh memimpin kuningan yang ditangguhkan 67 m dari atas Panthéon di Paris. Karena rotasi bumi di bawah pendulum berayun, pendulum di bidang osilasi muncul untuk memutar pada tingkat yang bergantung pada. Pada lintang Paris diprediksikan dan yang diamati pergeseran adalah sekitar 11 derajat searah jarum jam per jam. Foucault pendulums sekarang ayunan di Museum-Museum di seluruh dunia.Periode rotasiPaparan langit utara 3571 kedua.Hari matahari sejatiArtikel utama: waktu matahariPeriode rotasi bumi relatif kepada matahari (benar siang hingga siang benar) adalah yang benar hari matahari atau jelas hari matahari. Itu tergantung pada gerak orbit bumi dan dengan demikian dipengaruhi oleh perubahan dalam eksentrisitas dan kecenderungan dari orbit bumi. Keduanya bervariasi selama ribuan tahun sehingga variasi tahunan hari matahari sejati juga bervariasi. Umumnya, itu lebih dari hari matahari berarti selama periode dua tahun dan lebih pendek selama dua.[n 2] Hari matahari sejati cenderung lebih lama di dekat perihelion saat matahari tampaknya bergerak sepanjang litar matahari melalui sudut yang lebih besar dari biasanya, mengambil sekitar 10 detik lagi untuk melakukannya. Sebaliknya, itu adalah sekitar 10 detik lebih pendek dekat aphelion. Ini adalah sekitar 20 detik lagi dekat solstice ketika proyeksi gerakan nyata matahari di sepanjang litar matahari ke Ekuator langit menyebabkan sinar matahari bergerak melalui sudut yang lebih besar daripada biasanya. Sebaliknya, dekat ekuinoks proyeksi khatulistiwa lebih pendek oleh sekitar 20 detik. Saat ini, menggabungkan perihelion dan solstice efek untuk memperpanjang hari matahari sejati dekat 22 Desember oleh 30 detik surya berarti, tetapi efek solstice sebagian dibatalkan oleh efek aphelion dekat 19 Juni ketika itu adalah hanya 13 detik lagi. Efek dari ekuinoks mempersingkat itu dekat 26 Maret dan September 16 oleh 18 detik dan 21 detik, masing-masing.[18][19][20]Hari matahari berartiArtikel utama: waktu matahari § berarti waktu matahariRata-rata hari matahari sejati selama satu tahun adalah hari matahari berarti, yang berisi 86,400 berarti surya detik. Saat ini, setiap detik ini sedikit lebih lama dari SI kedua karena hari matahari berarti bumi saat ini sedikit lebih lama dari itu selama abad ke-19 karena gesekan pasang surut. Panjang rata-rata hari matahari berarti sejak diperkenalkannya lompatan kedua pada tahun 1972 telah sekitar 0-2 ms lebih dari 86,400 SI detik.[21][22][23] acak fluktuasi karena inti-mantel kopling memiliki amplitudo sekitar 5 ms. [24] [25] kedua matahari rata-rata antara 1750 dan 1892 dipilih pada tahun 1895 oleh Simon Newcomb sebagai unit independen waktu dalam tabel nya matahari. Tabel ini digunakan untuk menghitung dunia ephemerides antara tahun 1900 dan 1983, sehingga kedua ini dikenal sebagai ephemeris kedua. Pada tahun 1967 SI kedua dibuat sama ephemeris kedua.[26]Waktu matahari jelas adalah ukuran rotasi bumi dan perbedaan antara itu dan waktu matahari berarti dikenal sebagai persamaan waktu.Stellar dan sideris hariDi sebuah planet yang prograde seperti bumi, bintang hari lebih pendek daripada hari matahari. Pada waktu 1, matahari dan sebuah bintang jauh tertentu keduanya overhead. Pada saat 2, planet telah diputar 360° dan bintang jauh overhead lagi tapi matahari tidak (1→2 = satu bintang hari). Ianya tidak sampai sedikit kemudian, pada waktu 3, bahwa matahari adalah overhead lagi (1→3 = satu hari matahari).Periode rotasi bumi dibandingkan bintang-bintang, disebut hari stellar oleh rotasi bumi internasional dan referensi sistem Layanan (IERS), adalah 86,164.098 903 691 detik
Sedang diterjemahkan, harap tunggu..
Hasil (Bahasa Indonesia) 2:[Salinan]
Disalin!
Earth's rotation
From Wikipedia, the free encyclopedia
For the duration of daylight and night, see Daylight.
An animation showing the rotation of the Earth around its own axis.
Southern night sky over the Residencia “hotel” at ESO’s Paranal Observatory in Chile.[1]

Earth's rotation is the rotation of the solid Earth around its own axis. The Earth rotates from the west towards the east. As viewed from the North Star or polestar Polaris, the Earth turns counter-clockwise.

The North Pole, also known as the Geographic North Pole or Terrestrial North Pole, is the point in the Northern Hemisphere where the Earth's axis of rotation meets its surface. This point is distinct from the Earth's North Magnetic Pole. The South Pole is the other point where the Earth's axis of rotation intersects its surface, in Antarctica.

The Earth rotates once in about 24 hours with respect to the sun and once every 23 hours 56 minutes and 4 seconds with respect to the stars (see below). Earth's rotation is slowing slightly with time; thus, a day was shorter in the past. This is due to the tidal effects the Moon has on Earth's rotation. Atomic clocks show that a modern day is longer by about 1.7 milliseconds than a century ago,[2] slowly increasing the rate at which UTC is adjusted by leap seconds.

Contents

1 History
1.1 Empirical tests
2 Rotation period
2.1 True solar day
2.2 Mean solar day
2.3 Stellar and sidereal day
2.4 Angular speed
3 Changes in rotation
3.1 Measurement
4 Origin
5 See also
6 Notes
7 References
8 External links

History

Among the ancient Greeks, several of the Pythagorean school believed in the rotation of the earth rather than the apparent diurnal rotation of the heavens. The first was Philolaus (470-385 BCE) though his system was complicated, including a counter-earth rotating daily about a central fire.[3]

A more conventional picture was that supported by Hicetas, Heraclides and Ecphantus in the fourth century BCE who assumed that the earth rotated but did not suggest that the earth revolved about the sun. In the third century BCE, Aristarchus of Samos suggested the sun's central place.

However, Aristotle in the fourth century criticized the ideas of Philolaus as being based on theory rather than observation. He established the idea of a sphere of fixed stars that rotated about the earth.[4] This was accepted by most of those who came after, in particular Claudius Ptolemy (2nd century CE), who thought the earth would be devastated by gales if it rotated.[5]

In 499 CE, the Indian astronomer Aryabhata wrote that the spherical earth rotates about its axis daily, and that the apparent movement of the stars is a relative motion caused by the rotation of the earth. He provided the following analogy: "Just as a man in a boat going in one direction sees the stationary things on the bank as moving in the opposite direction, in the same way to a man at Lanka the fixed stars appear to be going westward."[6][7]

In the Middle Ages, Thomas Aquinas accepted Aristotle's view[8] and so, reluctantly, did John Buridan[9] and Nicole Oresme[10] in the fourteenth century. Not until Nicolaus Copernicus in 1543 adopted a heliocentric world system did the earth's rotation begin to be established. Copernicus pointed out that if the movement of the earth is violent, then the movement of the stars must be very much more so. He acknowledged the contribution of the Pythagoreans and pointed to examples of relative motion. For Copernicus this was the first step in establishing the simpler pattern of planets circling a central sun.[11]

This was not accepted immediately even by many astronomers due to the widespread conformance to Aristotle and the Bible. Tycho Brahe, who produced accurate observations on which Kepler based his laws, used Copernicus's work as the basis of a system assuming a stationary earth. In 1600, William Gilbert strongly supported the earth's rotation in his treatise on the earth's magnetism[12] and thereby influenced many of his contemporaries.[13] Those like Gilbert who did not openly support or reject the motion of the earth about the sun are often called "semi-Copernicans".[14] A century after Copernicus, Riccioli disputed the model of a rotating earth due to the lack of then-observable eastward deflections in falling bodies;[15] such deflections would later be called the Coriolis effect. However, the contributions of Kepler, Galileo and Newton gathered support for the theory of the rotation of the Earth.
Empirical tests

The earth's rotation implies that the equator bulges and the poles are flattened. In his Principia, Newton predicted this flattening would occur in the ratio of 1:230, and pointed to the 1673 pendulum measurements by Richer as corroboration of the change in gravity,[16] but initial measurements of meridian lengths by Picard and Cassini at the end of the 17th century suggested the opposite. However measurements by Maupertuis and the French Geodetic Mission in the 1730s established the flattening, thus confirming both Newton and the Copernican position.[17]

In the Earth's rotating frame of reference, a freely moving body follows an apparent path that deviates from the one it would follow in a fixed frame of reference. Because of this Coriolis effect, falling bodies veer slightly eastward from the vertical plumb line below their point of release, and projectiles veer right in the northern hemisphere (and left in the southern) from the direction in which they are shot. The Coriolis effect is mainly observable at a meteorological scale, where it is responsible for the differing rotation direction of cyclones in the northern and southern hemispheres.

Hooke, following a 1679 suggestion from Newton, tried unsuccessfully to verify the predicted eastward deviation of a body dropped from a height of 8.2 meters, but definitive results were only obtained later, in the late 18th and early 19th century, by Giovanni Battista Guglielmini in Bologna, Johann Friedrich Benzenberg in Hamburg and Ferdinand Reich in Freiberg, using taller towers and carefully released weights.[n 1] A ball dropped from a height of 158.5 m (520 ft) departed by 27.4 mm (1.08 in) from the vertical compared with a calculated value of 28.1 mm (1.11 in).

The most celebrated test of Earth's rotation is the Foucault pendulum first built by physicist Léon Foucault in 1851, which consisted of a lead-filled brass sphere suspended 67 m from the top of the Panthéon in Paris. Because of the Earth's rotation under the swinging pendulum, the pendulum's plane of oscillation appears to rotate at a rate depending on latitude. At the latitude of Paris the predicted and observed shift was about 11 degrees clockwise per hour. Foucault pendulums now swing in museums around the world.
Rotation period
A 3571 second exposure of the northern sky.
True solar day
Main article: Solar time

Earth's rotation period relative to the Sun (true noon to true noon) is its true solar day or apparent solar day. It depends on the Earth's orbital motion and is thus affected by changes in the eccentricity and inclination of Earth's orbit. Both vary over thousands of years so the annual variation of the true solar day also varies. Generally, it is longer than the mean solar day during two periods of the year and shorter during another two.[n 2] The true solar day tends to be longer near perihelion when the Sun apparently moves along the ecliptic through a greater angle than usual, taking about 10 seconds longer to do so. Conversely, it is about 10 seconds shorter near aphelion. It is about 20 seconds longer near a solstice when the projection of the Sun's apparent movement along the ecliptic onto the celestial equator causes the Sun to move through a greater angle than usual. Conversely, near an equinox the projection onto the equator is shorter by about 20 seconds. Currently, the perihelion and solstice effects combine to lengthen the true solar day near December 22 by 30 mean solar seconds, but the solstice effect is partially cancelled by the aphelion effect near June 19 when it is only 13 seconds longer. The effects of the equinoxes shorten it near March 26 and September 16 by 18 seconds and 21 seconds, respectively.[18][19][20]
Mean solar day
Main article: Solar time § Mean solar time

The average of the true solar day during the course of an entire year is the mean solar day, which contains 86,400 mean solar seconds. Currently, each of these seconds is slightly longer than an SI second because Earth's mean solar day is now slightly longer than it was during the 19th century due to tidal friction. The average length of the mean solar day since the introduction of the leap second in 1972 has been about 0 to 2 ms longer than 86,400 SI seconds.[21][22][23] Random fluctuations due to core-mantle coupling have an amplitude of about 5 ms.[24][25] The mean solar second between 1750 and 1892 was chosen in 1895 by Simon Newcomb as the independent unit of time in his Tables of the Sun. These tables were used to calculate the world's ephemerides between 1900 and 1983, so this second became known as the ephemeris second. In 1967 the SI second was made equal to the ephemeris second.[26]

The apparent solar time is a measure of the Earth's rotation and the difference between it and the mean solar time is known as the equation of time.
Stellar and sidereal day
On a prograde planet like the Earth, the stellar day is shorter than the solar day. At time 1, the Sun and a certain distant star are both overhead. At time 2, the planet has rotated 360° and the distant star is overhead again but the Sun is not (1→2 = one stellar day). It is not until a little later, at time 3, that the Sun is overhead again (1→3 = one solar day).

Earth's rotation period relative to the fixed stars, called its stellar day by the International Earth Rotation and Reference Systems Service (IERS), is 86,164.098 903 691 seconds
Sedang diterjemahkan, harap tunggu..
 
Bahasa lainnya
Dukungan alat penerjemahan: Afrikans, Albania, Amhara, Arab, Armenia, Azerbaijan, Bahasa Indonesia, Basque, Belanda, Belarussia, Bengali, Bosnia, Bulgaria, Burma, Cebuano, Ceko, Chichewa, China, Cina Tradisional, Denmark, Deteksi bahasa, Esperanto, Estonia, Farsi, Finlandia, Frisia, Gaelig, Gaelik Skotlandia, Galisia, Georgia, Gujarati, Hausa, Hawaii, Hindi, Hmong, Ibrani, Igbo, Inggris, Islan, Italia, Jawa, Jepang, Jerman, Kannada, Katala, Kazak, Khmer, Kinyarwanda, Kirghiz, Klingon, Korea, Korsika, Kreol Haiti, Kroat, Kurdi, Laos, Latin, Latvia, Lituania, Luksemburg, Magyar, Makedonia, Malagasi, Malayalam, Malta, Maori, Marathi, Melayu, Mongol, Nepal, Norsk, Odia (Oriya), Pashto, Polandia, Portugis, Prancis, Punjabi, Rumania, Rusia, Samoa, Serb, Sesotho, Shona, Sindhi, Sinhala, Slovakia, Slovenia, Somali, Spanyol, Sunda, Swahili, Swensk, Tagalog, Tajik, Tamil, Tatar, Telugu, Thai, Turki, Turkmen, Ukraina, Urdu, Uyghur, Uzbek, Vietnam, Wales, Xhosa, Yiddi, Yoruba, Yunani, Zulu, Bahasa terjemahan.

Copyright ©2025 I Love Translation. All reserved.

E-mail: