7.2 TURBINES (EXPANDERS) The expansion of a gas in a nozzle to produce terjemahan - 7.2 TURBINES (EXPANDERS) The expansion of a gas in a nozzle to produce Bahasa Indonesia Bagaimana mengatakan

7.2 TURBINES (EXPANDERS) The expans

7.2 TURBINES (EXPANDERS)
The expansion of a gas in a nozzle to produce a high-velocity stream is a process that converts
internal energy into kinetic energy. This kinetic energy is in turn converted into shaft work
when the stream impinges on blades attached to a rotating shaft. Thus a turbine (or expander)
consists of alternate sets of nozzles and rotating blades through which vapor or gas flows in a
steady-state expansion process whose overall effect is the efficient conversion of the internal
energy of a high-pressure stream into shaft work. When steam provides the motive force as in
a power plant, the device is called a turbine; when a high-pressure gas, such as ammonia or
ethylene in a chemical or petrochemical plant, is the working fluid, the device is often called
an expander. The process for either case is shown in Fig. 7.3.
Equations (2.31) and (2.32) are appropriate energy relations. However, the potential-
energy term can be omitted, because there is little change in elevation. Moreover, in any
properly designed turbine, heat transfer is negligible and the inlet and exit pipes are sized to
make fluid velocities roughly equal. Equations (2.3 1) and (2.32) therefore reduce to:
Normally, the inlet conditions TI and PI and the discharge pressure P2 are known. Thus
in Eq. (7.14) only HI is known, and both H2 and W, remain as unknowns. The energy equation
0/5000
Dari: -
Ke: -
Hasil (Bahasa Indonesia) 1: [Salinan]
Disalin!
7.2 TURBINES (EXPANDERS)
The expansion of a gas in a nozzle to produce a high-velocity stream is a process that converts
internal energy into kinetic energy. This kinetic energy is in turn converted into shaft work
when the stream impinges on blades attached to a rotating shaft. Thus a turbine (or expander)
consists of alternate sets of nozzles and rotating blades through which vapor or gas flows in a
steady-state expansion process whose overall effect is the efficient conversion of the internal
energy of a high-pressure stream into shaft work. When steam provides the motive force as in
a power plant, the device is called a turbine; when a high-pressure gas, such as ammonia or
ethylene in a chemical or petrochemical plant, is the working fluid, the device is often called
an expander. The process for either case is shown in Fig. 7.3.
Equations (2.31) and (2.32) are appropriate energy relations. However, the potential-
energy term can be omitted, because there is little change in elevation. Moreover, in any
properly designed turbine, heat transfer is negligible and the inlet and exit pipes are sized to
make fluid velocities roughly equal. Equations (2.3 1) and (2.32) therefore reduce to:
Normally, the inlet conditions TI and PI and the discharge pressure P2 are known. Thus
in Eq. (7.14) only HI is known, and both H2 and W, remain as unknowns. The energy equation
Sedang diterjemahkan, harap tunggu..
Hasil (Bahasa Indonesia) 2:[Salinan]
Disalin!
7.2 TURBIN (ekspander)
Ekspansi gas dalam nosel untuk menghasilkan aliran kecepatan tinggi adalah proses yang mengubah
energi internal menjadi energi kinetik. Energi kinetik ini pada gilirannya diubah menjadi kerja poros
ketika sungai impinges pada pisau yang melekat pada poros berputar. Jadi turbin (atau expander)
terdiri dari set alternatif nozel dan memutar pisau di mana uap atau aliran gas dalam
proses ekspansi-negara yang efek keseluruhan adalah konversi efisien internal
energi aliran bertekanan tinggi ke dalam pekerjaan poros. Ketika uap memberikan kekuatan motif seperti
pembangkit listrik, perangkat ini disebut turbin; ketika gas bertekanan tinggi, seperti amonia atau
etilen di sebuah pabrik kimia atau petrokimia, adalah fluida kerja, perangkat ini sering disebut
sebagai expander. Proses untuk kedua kasus ditunjukkan pada Gambar. 7.3.
Persamaan (2.31) dan (2.32) adalah hubungan energi yang tepat. Namun, potential-
istilah energi dapat dihilangkan, karena ada sedikit perubahan elevasi. Selain itu, dalam setiap
turbin yang dirancang dengan baik, perpindahan panas diabaikan dan inlet dan keluar pipa berukuran
membuat kecepatan cairan kurang lebih sama. Persamaan (2.3 1) dan (2.32) karena itu mengurangi ke:
Biasanya, kondisi inlet TI dan PI dan P2 tekanan debit diketahui. Jadi
dalam Pers. (7.14) hanya HI diketahui, dan kedua H2 dan W, tetap sebagai diketahui. Persamaan energi
Sedang diterjemahkan, harap tunggu..
 
Bahasa lainnya
Dukungan alat penerjemahan: Afrikans, Albania, Amhara, Arab, Armenia, Azerbaijan, Bahasa Indonesia, Basque, Belanda, Belarussia, Bengali, Bosnia, Bulgaria, Burma, Cebuano, Ceko, Chichewa, China, Cina Tradisional, Denmark, Deteksi bahasa, Esperanto, Estonia, Farsi, Finlandia, Frisia, Gaelig, Gaelik Skotlandia, Galisia, Georgia, Gujarati, Hausa, Hawaii, Hindi, Hmong, Ibrani, Igbo, Inggris, Islan, Italia, Jawa, Jepang, Jerman, Kannada, Katala, Kazak, Khmer, Kinyarwanda, Kirghiz, Klingon, Korea, Korsika, Kreol Haiti, Kroat, Kurdi, Laos, Latin, Latvia, Lituania, Luksemburg, Magyar, Makedonia, Malagasi, Malayalam, Malta, Maori, Marathi, Melayu, Mongol, Nepal, Norsk, Odia (Oriya), Pashto, Polandia, Portugis, Prancis, Punjabi, Rumania, Rusia, Samoa, Serb, Sesotho, Shona, Sindhi, Sinhala, Slovakia, Slovenia, Somali, Spanyol, Sunda, Swahili, Swensk, Tagalog, Tajik, Tamil, Tatar, Telugu, Thai, Turki, Turkmen, Ukraina, Urdu, Uyghur, Uzbek, Vietnam, Wales, Xhosa, Yiddi, Yoruba, Yunani, Zulu, Bahasa terjemahan.

Copyright ©2025 I Love Translation. All reserved.

E-mail: