The high theoretical energy density of lithium−oxygen batteries brings terjemahan - The high theoretical energy density of lithium−oxygen batteries brings Bahasa Indonesia Bagaimana mengatakan

The high theoretical energy density

The high theoretical energy density of lithium−oxygen batteries brings
the promise of higher performance than existing batteries, but several technological
problems must be addressed before actual applications are made possible. Among the
difficulties to be faced is the slow oxygen reduction reaction (ORR), which requires a
suitable choice of catalysts and electrolytic solution. This can only be achieved if the
kinetics and mechanism of this reaction are known in detail. In this study, we
determined the rate constants for each elementary step of ORR for a platinum electrode
in 0.1 mol·L−1 LiClO4/1,2-dimethoxyethane (DME), using a kinetic model in the
frequency domain. We found that the energy storage capacity of lithium−air batteries
can be increased by converting a large amount of lithium superoxide into lithium
peroxide during the electrochemical step in comparison with chemical disproportionation.
The mechanisms for ORR were supported by data from an electrochemical quartz
crystal microbalance (EQCM): ORR could be distinguished from parasitic reactions
induced by solvent degradation, and agglomerates of LixO2 (1 ≤ x ≤ 2) were adsorbed on the electrode. The rate-limiting step
for ORR was the electron transfer to the oxygen molecules strongly adsorbed onto platinum sites, particularly as a large amount
of reaction product (Li2O2) adsorbed onto the electrode. Even though Pt sheets are likely to be impracticable for real
applications due to their low surface area, they were useful in making it possible to determine the kinetics of ORR steps. This can
now be employed to devise more involved electrodes, such as those containing dispersed Pt nanoparticles.
0/5000
Dari: -
Ke: -
Hasil (Bahasa Indonesia) 1: [Salinan]
Disalin!
The high theoretical energy density of lithium−oxygen batteries bringsthe promise of higher performance than existing batteries, but several technologicalproblems must be addressed before actual applications are made possible. Among thedifficulties to be faced is the slow oxygen reduction reaction (ORR), which requires asuitable choice of catalysts and electrolytic solution. This can only be achieved if thekinetics and mechanism of this reaction are known in detail. In this study, wedetermined the rate constants for each elementary step of ORR for a platinum electrodein 0.1 mol·L−1 LiClO4/1,2-dimethoxyethane (DME), using a kinetic model in thefrequency domain. We found that the energy storage capacity of lithium−air batteriescan be increased by converting a large amount of lithium superoxide into lithiumperoxide during the electrochemical step in comparison with chemical disproportionation.The mechanisms for ORR were supported by data from an electrochemical quartzcrystal microbalance (EQCM): ORR could be distinguished from parasitic reactionsinduced by solvent degradation, and agglomerates of LixO2 (1 ≤ x ≤ 2) were adsorbed on the electrode. The rate-limiting stepfor ORR was the electron transfer to the oxygen molecules strongly adsorbed onto platinum sites, particularly as a large amountof reaction product (Li2O2) adsorbed onto the electrode. Even though Pt sheets are likely to be impracticable for realapplications due to their low surface area, they were useful in making it possible to determine the kinetics of ORR steps. This cannow be employed to devise more involved electrodes, such as those containing dispersed Pt nanoparticles.
Sedang diterjemahkan, harap tunggu..
Hasil (Bahasa Indonesia) 2:[Salinan]
Disalin!
Kepadatan energi teoritis tinggi baterai lithium-oksigen membawa
janji kinerja yang lebih tinggi daripada baterai yang ada, namun beberapa teknologi
masalah harus ditangani sebelum aplikasi yang sebenarnya dimungkinkan. Di antara
kesulitan yang harus dihadapi adalah lambat reaksi reduksi oksigen (ORR), yang membutuhkan
pilihan yang cocok katalis dan larutan elektrolit. Ini hanya dapat dicapai jika
kinetika dan mekanisme reaksi ini dikenal secara rinci. Dalam studi ini, kami
menentukan konstanta laju untuk setiap langkah dasar dari ORR untuk elektroda platinum
di 0,1 Moll-1 LiClO4 / 1,2-dimetoksietana (DME), menggunakan model kinetik dalam
domain frekuensi. Kami menemukan bahwa kapasitas penyimpanan energi dari baterai lithium-udara
dapat ditingkatkan dengan mengubah sejumlah besar lithium superoksida menjadi lithium
peroksida selama tahap elektrokimia dibandingkan dengan disproporsionasi kimia.
Mekanisme untuk ORR didukung oleh data dari elektrokimia kuarsa
ditimbang kristal (EQCM): ORR bisa dibedakan dari reaksi parasit
yang disebabkan oleh degradasi pelarut, dan gumpalan dari LixO2 (1 ≤ x ≤ 2) yang diserap pada elektroda. Langkah tingkat-membatasi
untuk ORR adalah transfer elektron ke molekul oksigen sangat teradsorbsi ke situs platinum, terutama karena sejumlah besar
dari produk reaksi (Li2O2) teradsorpsi ke elektroda. Meskipun Pt lembar cenderung tidak praktis untuk nyata
aplikasi karena luas permukaan yang rendah, mereka berguna dalam sehingga memungkinkan untuk menentukan kinetika langkah ORR. Ini dapat
sekarang digunakan untuk merancang lebih terlibat elektroda, seperti yang mengandung tersebar Pt nanopartikel.
Sedang diterjemahkan, harap tunggu..
 
Bahasa lainnya
Dukungan alat penerjemahan: Afrikans, Albania, Amhara, Arab, Armenia, Azerbaijan, Bahasa Indonesia, Basque, Belanda, Belarussia, Bengali, Bosnia, Bulgaria, Burma, Cebuano, Ceko, Chichewa, China, Cina Tradisional, Denmark, Deteksi bahasa, Esperanto, Estonia, Farsi, Finlandia, Frisia, Gaelig, Gaelik Skotlandia, Galisia, Georgia, Gujarati, Hausa, Hawaii, Hindi, Hmong, Ibrani, Igbo, Inggris, Islan, Italia, Jawa, Jepang, Jerman, Kannada, Katala, Kazak, Khmer, Kinyarwanda, Kirghiz, Klingon, Korea, Korsika, Kreol Haiti, Kroat, Kurdi, Laos, Latin, Latvia, Lituania, Luksemburg, Magyar, Makedonia, Malagasi, Malayalam, Malta, Maori, Marathi, Melayu, Mongol, Nepal, Norsk, Odia (Oriya), Pashto, Polandia, Portugis, Prancis, Punjabi, Rumania, Rusia, Samoa, Serb, Sesotho, Shona, Sindhi, Sinhala, Slovakia, Slovenia, Somali, Spanyol, Sunda, Swahili, Swensk, Tagalog, Tajik, Tamil, Tatar, Telugu, Thai, Turki, Turkmen, Ukraina, Urdu, Uyghur, Uzbek, Vietnam, Wales, Xhosa, Yiddi, Yoruba, Yunani, Zulu, Bahasa terjemahan.

Copyright ©2025 I Love Translation. All reserved.

E-mail: