up to a small correction f(λ) (Eq. S10), which turns out to benegligib terjemahan - up to a small correction f(λ) (Eq. S10), which turns out to benegligib Bahasa Indonesia Bagaimana mengatakan

up to a small correction f(λ) (Eq.

up to a small correction f(λ) (Eq. S10), which turns out to be
negligible for moderate to fast growth (e.g., above ∼0.5/h). However,
comparing Eq. 9 to the form [6] for the three-component
model, the interpretations of the slope and the offset of the
linear relation are different as is discussed below. Because
ϕT ∝ ϕRb, ϕT also depends linearly on λ, and consequently the
translation speed γ (Eq. 7) is approximately given by a Michaelis–
Menten function of growth rate for moderate-to-fast growth.
In Fig. 3 A and B, we plot the calculated growth rate dependence
of the ribosomal proteome fraction (ϕRb) and the
translation speed k = γ(ϕT)/mRb, matched to the corresponding
data for growth in different nutrients (data as in Fig. 1 A and B).
With α set to 0.6, this matching determines the two parameters
characterizing the translation speed, the maximal speed γmax and
the Michaelis constant φM, and the offset ϕRb,0 attributed to inactive
ribosomes. The values of the fitted parameters are given in
Table S1. Specifically, we obtain φM = 0.029, which is only slightly
larger than the minimal value (0.02) estimated above based on
diffusion-limited ternary complex binding. As a consistency check
we also compare the calculated growth rate dependence of the
T-fraction (ϕT) with an estimate of that proteome fraction from
the measured amount of EF-Tu for growth in different nutrients
(15, 34) (the measured proteome fraction of EF-Tu was multiplied
by 1.6 to account for the tRNA synthetases) (Methods). This
estimate and the results from the model show good agreement,
with exception of the fastest growth.
Finally, we plotted the ratio ϕT : ϕR in Fig. 3D, expressed as
a mass ratio (α) and as a ratio of molecule numbers (EF-Tu per
ribosome) together with experimental data for EF-Tu per ribosome
(15, 34, 35) (gray symbols) and tRNA per ribosome (31,
36) (white symbols). Within the present model the ratio ϕT : ϕR
is constant; α = 0.6 corresponds to 7.6 elongation factors per
ribosome. The data for EF-Tu per ribosome show a slight, but
systematic reduction with increasing growth rate, possibly indicating
that the two proteome fractions are not exactly coregulated,
at least during very fast growth. For the ratio of tRNAs
to ribosomes, the situation is less clear: There is a slight decrease at
fast growth in one dataset (31), but not in another (1, 36). The
increased tRNA content seen at very slow growth [based on data
from chemostat growth (36)] is believed to arise from differential
stability of tRNA and rRNA at slow growth (2) and thus may not
reflect the dependence of the corresponding proteome fraction.
In sum, over moderate-to-fast growth rates, the four-component
model with coregulation of T-proteins and ribosomal proteins
recapitulates the growth dependence of the proteins involved
in translation, as well as the growth-rate–dependent translation
speed under conditions where growth is modulated by
nutrient quality.
0/5000
Dari: -
Ke: -
Hasil (Bahasa Indonesia) 1: [Salinan]
Disalin!
up to a small correction f(λ) (Eq. S10), which turns out to benegligible for moderate to fast growth (e.g., above ∼0.5/h). However,comparing Eq. 9 to the form [6] for the three-componentmodel, the interpretations of the slope and the offset of thelinear relation are different as is discussed below. BecauseϕT ∝ ϕRb, ϕT also depends linearly on λ, and consequently thetranslation speed γ (Eq. 7) is approximately given by a Michaelis–Menten function of growth rate for moderate-to-fast growth.In Fig. 3 A and B, we plot the calculated growth rate dependenceof the ribosomal proteome fraction (ϕRb) and thetranslation speed k = γ(ϕT)/mRb, matched to the correspondingdata for growth in different nutrients (data as in Fig. 1 A and B).With α set to 0.6, this matching determines the two parameterscharacterizing the translation speed, the maximal speed γmax andthe Michaelis constant φM, and the offset ϕRb,0 attributed to inactiveribosomes. The values of the fitted parameters are given inTable S1. Specifically, we obtain φM = 0.029, which is only slightlylarger than the minimal value (0.02) estimated above based ondiffusion-limited ternary complex binding. As a consistency checkwe also compare the calculated growth rate dependence of theT-fraction (ϕT) with an estimate of that proteome fraction fromthe measured amount of EF-Tu for growth in different nutrients(15, 34) (the measured proteome fraction of EF-Tu was multipliedby 1.6 to account for the tRNA synthetases) (Methods). Thisestimate and the results from the model show good agreement,with exception of the fastest growth.Finally, we plotted the ratio ϕT : ϕR in Fig. 3D, expressed asa mass ratio (α) and as a ratio of molecule numbers (EF-Tu perribosome) together with experimental data for EF-Tu per ribosome(15, 34, 35) (gray symbols) and tRNA per ribosome (31,36) (white symbols). Within the present model the ratio ϕT : ϕRis constant; α = 0.6 corresponds to 7.6 elongation factors perribosome. The data for EF-Tu per ribosome show a slight, butsystematic reduction with increasing growth rate, possibly indicatingthat the two proteome fractions are not exactly coregulated,at least during very fast growth. For the ratio of tRNAsto ribosomes, the situation is less clear: There is a slight decrease atfast growth in one dataset (31), but not in another (1, 36). Theincreased tRNA content seen at very slow growth [based on datafrom chemostat growth (36)] is believed to arise from differentialstability of tRNA and rRNA at slow growth (2) and thus may notreflect the dependence of the corresponding proteome fraction.In sum, over moderate-to-fast growth rates, the four-componentmodel with coregulation of T-proteins and ribosomal proteinsrecapitulates the growth dependence of the proteins involvedin translation, as well as the growth-rate–dependent translationspeed under conditions where growth is modulated bynutrient quality.
Sedang diterjemahkan, harap tunggu..
Hasil (Bahasa Indonesia) 2:[Salinan]
Disalin!
sampai f koreksi kecil (λ) (Eq. S10), yang ternyata menjadi
diabaikan untuk moderat untuk pertumbuhan yang cepat (misalnya, di atas ~0.5 / h). Namun,
membandingkan persamaan. 9 ke bentuk [6] untuk tiga komponen
model, interpretasi dari lereng dan offset dari
hubungan linier yang berbeda seperti yang dibahas di bawah ini. Karena
φT α φRb, φT juga tergantung linear pada λ, dan akibatnya
γ kecepatan penerjemahan (Persamaan. 7) kira-kira diberikan oleh Michaelis-
fungsi Menten laju pertumbuhan untuk pertumbuhan sedang sampai cepat.
Dalam Gambar. 3 A dan B, kita plot dihitung ketergantungan tingkat pertumbuhan
dari fraksi proteome ribosom (φRb) dan
kecepatan penerjemahan k = γ (φT) / MRB, disesuaikan dengan sesuai
data untuk pertumbuhan nutrisi yang berbeda (data seperti pada Gambar. 1 A dan B).
Dengan α set ke 0.6, pencocokan ini menentukan dua parameter
karakteristik kecepatan penerjemahan, kecepatan γmax maksimal dan
yang φM konstan Michaelis, dan offset φRb, 0 dikaitkan dengan aktif
ribosom. Nilai-nilai parameter dipasang diberikan dalam
Tabel S1. Secara khusus, kita memperoleh φM = 0.029, yang hanya sedikit
lebih besar dari nilai minimal (0.02) diperkirakan di atas berdasarkan
difusi terbatas kompleks terner mengikat. Sebagai konsistensi cek
kami juga membandingkan dihitung ketergantungan laju pertumbuhan
T-fraksi (φT) dengan perkiraan bahwa fraksi proteome dari
jumlah diukur dari EF-Tu untuk pertumbuhan nutrisi yang berbeda
(15, 34) (fraksi proteoma diukur EF-Tu dikalikan
dengan 1,6 untuk menjelaskan tRNA sintetase) (Metode). Ini
perkiraan dan hasil dari model menunjukkan kesepakatan yang baik,
dengan pengecualian dari pertumbuhan tercepat.
Akhirnya, kita merencanakan rasio φT: φR pada Gambar. 3D, dinyatakan sebagai
rasio massa (α) dan sebagai rasio angka molekul (EF-Tu per
ribosom) bersama-sama dengan data eksperimental untuk EF-Tu per ribosom
(15, 34, 35) (simbol abu-abu) dan tRNA per ribosom ( 31,
36) (simbol putih). Dalam model ini rasio φT: φR
adalah konstan; α = 0,6 sesuai dengan 7.6 faktor elongasi per
ribosom. Data untuk EF-Tu per ribosom menunjukkan sedikit, tapi
pengurangan sistematis dengan meningkatnya laju pertumbuhan, mungkin menunjukkan
bahwa dua fraksi proteome tidak tepat coregulated,
setidaknya selama pertumbuhan sangat cepat. Untuk rasio tRNA
ke ribosom, situasi yang kurang jelas: Ada sedikit penurunan pada
pertumbuhan yang cepat dalam satu dataset (31), tetapi tidak di tempat lain (1, 36). The
meningkat konten tRNA terlihat di pertumbuhan yang sangat lambat [berdasarkan data
dari pertumbuhan chemostat (36)] diyakini timbul dari diferensial
stabilitas tRNA dan rRNA pada pertumbuhan yang lambat (2) dan dengan demikian mungkin tidak
mencerminkan ketergantungan fraksi proteoma yang sesuai.
Singkatnya, lebih dari tingkat pertumbuhan sedang sampai cepat, empat komponen
model dengan coregulation dari T-protein dan protein ribosom
rekapitulasi ketergantungan pertumbuhan protein yang terlibat
dalam terjemahan, serta terjemahan pertumbuhan tergantung tingkat
kecepatan dalam kondisi dimana pertumbuhan dimodulasi oleh
kualitas gizi.
Sedang diterjemahkan, harap tunggu..
 
Bahasa lainnya
Dukungan alat penerjemahan: Afrikans, Albania, Amhara, Arab, Armenia, Azerbaijan, Bahasa Indonesia, Basque, Belanda, Belarussia, Bengali, Bosnia, Bulgaria, Burma, Cebuano, Ceko, Chichewa, China, Cina Tradisional, Denmark, Deteksi bahasa, Esperanto, Estonia, Farsi, Finlandia, Frisia, Gaelig, Gaelik Skotlandia, Galisia, Georgia, Gujarati, Hausa, Hawaii, Hindi, Hmong, Ibrani, Igbo, Inggris, Islan, Italia, Jawa, Jepang, Jerman, Kannada, Katala, Kazak, Khmer, Kinyarwanda, Kirghiz, Klingon, Korea, Korsika, Kreol Haiti, Kroat, Kurdi, Laos, Latin, Latvia, Lituania, Luksemburg, Magyar, Makedonia, Malagasi, Malayalam, Malta, Maori, Marathi, Melayu, Mongol, Nepal, Norsk, Odia (Oriya), Pashto, Polandia, Portugis, Prancis, Punjabi, Rumania, Rusia, Samoa, Serb, Sesotho, Shona, Sindhi, Sinhala, Slovakia, Slovenia, Somali, Spanyol, Sunda, Swahili, Swensk, Tagalog, Tajik, Tamil, Tatar, Telugu, Thai, Turki, Turkmen, Ukraina, Urdu, Uyghur, Uzbek, Vietnam, Wales, Xhosa, Yiddi, Yoruba, Yunani, Zulu, Bahasa terjemahan.

Copyright ©2024 I Love Translation. All reserved.

E-mail: