Better Customer Service. The benefit of accurate and complete informat terjemahan - Better Customer Service. The benefit of accurate and complete informat Bahasa Indonesia Bagaimana mengatakan

Better Customer Service. The benefi

Better Customer Service. The benefit of accurate and complete information for customer service cannot be overemphasized. Let us say the customer service representa- tive at a large bank receives a call. The customer at the other end of the line wants to talk about the service charge on his checking account. The bank customer service representa- tive notices a balance of $27.38 in the customer’s checking account. Why is he making a big fuss about the service charge with almost nothing in the account? But let us say the customer service representative clicks on the customer’s other accounts and finds that the
customer has $35,000 in his savings accounts and CDs worth more than $120,000. How do you think the customer service representative will answer the call? With respect, of course. Complete and accurate information improves customer service tremendously.
Newer Opportunities. Quality data in a data warehouse is a great boon for market- ing. It opens the doors to immense opportunities to cross-sell across product lines and de- partments. The users can select the buyers of one product and determine all the other products that are likely to be purchased by them. Marketing departments can conduct well-targeted campaigns. This is just one example of the numerous opportunities that are made possible by quality data. On the other hand, if the data is of inferior quality, the cam- paigns will be failures.
Reduced Costs and Risks. What are some of the risks of poor data quality? The ob- vious risk is strategic decisions that could lead to disastrous consequences. Other risks in- clude wasted time, malfunction of processes and systems, and sometimes even legal ac- tion by customers and business partners. One area where quality data reduces costs is in mailings to customers, especially in marketing campaigns. If the addresses are incom- plete, inaccurate, or duplicate, most of the mailings are wasted.
Improved Productivity. Users get an enterprise-wide view of information from the data warehouse. This is a primary goal of the data warehouse. In areas where a corporate- wide view of information naturally enables the streamlining of processes and operations, you will see productivity gains. For example, a company-wide view of purchasing pat- terns in a large department store can result in better purchasing procedures and strategies.
Reliable Strategic Decision Making. This point is worth repeating. If the data in the warehouse is reliable and of high quality, then decisions based on the information will be sound. No data warehouse can add value to a business until the data is clean and of high quality.
Types of Data Quality Problems As part of the discussion on why data quality is critical in the data warehouse, we have ex- plored the characteristics of quality data. The characteristics themselves have demonstrat- ed the critical need for quality data. The discussion of the benefits of having quality data further strengthens the argument for cleaner data. Our discussion of the critical need for quality data is not complete until we quickly walk through the types of problems you are likely to encounter if the data is polluted. Description of the problem types will convince you even more that data quality is of supreme importance. If 4% of the sales amounts are wrong in the billing systems of a $2 billion company, what is the estimated loss in revenue? $80 million. What happens when a large catalog sales company mails catalogs to customers and prospects? If there are duplicate records for the same customer in the customer files, then, depending on how extensive the du- plication problem is, the company will end up sending multiple catalogs to the same per- son. In a recent independent survey, businesses with data warehouses were asked the ques- tion: What is the biggest challenge in data warehouse development and usage? Please see Figure 13-2 for the ranking of the answers. Nearly half of the respondents rated data qual-





0/5000
Dari: -
Ke: -
Hasil (Bahasa Indonesia) 1: [Salinan]
Disalin!
Better Customer Service. The benefit of accurate and complete information for customer service cannot be overemphasized. Let us say the customer service representa- tive at a large bank receives a call. The customer at the other end of the line wants to talk about the service charge on his checking account. The bank customer service representa- tive notices a balance of $27.38 in the customer’s checking account. Why is he making a big fuss about the service charge with almost nothing in the account? But let us say the customer service representative clicks on the customer’s other accounts and finds that thecustomer has $35,000 in his savings accounts and CDs worth more than $120,000. How do you think the customer service representative will answer the call? With respect, of course. Complete and accurate information improves customer service tremendously. Newer Opportunities. Quality data in a data warehouse is a great boon for market- ing. It opens the doors to immense opportunities to cross-sell across product lines and de- partments. The users can select the buyers of one product and determine all the other products that are likely to be purchased by them. Marketing departments can conduct well-targeted campaigns. This is just one example of the numerous opportunities that are made possible by quality data. On the other hand, if the data is of inferior quality, the cam- paigns will be failures. Reduced Costs and Risks. What are some of the risks of poor data quality? The ob- vious risk is strategic decisions that could lead to disastrous consequences. Other risks in- clude wasted time, malfunction of processes and systems, and sometimes even legal ac- tion by customers and business partners. One area where quality data reduces costs is in mailings to customers, especially in marketing campaigns. If the addresses are incom- plete, inaccurate, or duplicate, most of the mailings are wasted. Improved Productivity. Users get an enterprise-wide view of information from the data warehouse. This is a primary goal of the data warehouse. In areas where a corporate- wide view of information naturally enables the streamlining of processes and operations, you will see productivity gains. For example, a company-wide view of purchasing pat- terns in a large department store can result in better purchasing procedures and strategies.Reliable Strategic Decision Making. This point is worth repeating. If the data in the warehouse is reliable and of high quality, then decisions based on the information will be sound. No data warehouse can add value to a business until the data is clean and of high quality.Types of Data Quality Problems As part of the discussion on why data quality is critical in the data warehouse, we have ex- plored the characteristics of quality data. The characteristics themselves have demonstrat- ed the critical need for quality data. The discussion of the benefits of having quality data further strengthens the argument for cleaner data. Our discussion of the critical need for quality data is not complete until we quickly walk through the types of problems you are likely to encounter if the data is polluted. Description of the problem types will convince you even more that data quality is of supreme importance. If 4% of the sales amounts are wrong in the billing systems of a $2 billion company, what is the estimated loss in revenue? $80 million. What happens when a large catalog sales company mails catalogs to customers and prospects? If there are duplicate records for the same customer in the customer files, then, depending on how extensive the du- plication problem is, the company will end up sending multiple catalogs to the same per- son. In a recent independent survey, businesses with data warehouses were asked the ques- tion: What is the biggest challenge in data warehouse development and usage? Please see Figure 13-2 for the ranking of the answers. Nearly half of the respondents rated data qual-
Sedang diterjemahkan, harap tunggu..
Hasil (Bahasa Indonesia) 2:[Salinan]
Disalin!
Layanan Pelanggan lebih baik. Manfaat dari informasi yang akurat dan lengkap untuk layanan pelanggan tidak bisa terlalu ditekankan. Mari kita katakan layanan pelanggan tive-wakil di sebuah bank besar menerima panggilan. Pelanggan di ujung lain dari garis itu ingin berbicara tentang biaya pelayanan pada rekening nya. Layanan nasabah bank tive-wakil pemberitahuan saldo $ 27,38 di rekening pelanggan. Mengapa dia membuat keributan besar tentang biaya pelayanan dengan hampir tidak ada di rekening? Tapi mari kita katakan perwakilan layanan pelanggan mengklik pada rekening pelanggan lain dan menemukan bahwa
pelanggan memiliki $ 35.000 dalam rekening tabungan dan CD bernilai lebih dari $ 120.000. Bagaimana Anda pikir perwakilan layanan pelanggan akan menjawab panggilan? Dengan hormat, tentu saja. Informasi yang lengkap dan akurat meningkatkan layanan pelanggan sangat.
Peluang Baru. Data kualitas dalam data warehouse adalah keuntungan besar bagi pasar-ing. Ini membuka pintu untuk kesempatan besar untuk cross-sell di seluruh lini produk dan partments de-. Para pengguna dapat memilih pembeli dari satu produk dan menentukan semua produk lain yang kemungkinan akan dibeli oleh mereka. Departemen pemasaran dapat melakukan kampanye yang ditargetkan. Ini hanyalah satu contoh dari banyak kesempatan yang dimungkinkan oleh data yang berkualitas. Di sisi lain, jika data yang berkualitas rendah, yang paigns cam- akan kegagalan.
Biaya Mengurangi Risiko dan. Apa adalah beberapa risiko kualitas data yang buruk? Risiko vious diamati adalah keputusan strategis yang dapat menyebabkan konsekuensi bencana. Risiko lainnya di- clude membuang-buang waktu, kerusakan proses dan sistem, dan tion ac- kadang-kadang bahkan hukum oleh pelanggan dan mitra bisnis. Satu area di mana kualitas data mengurangi biaya dalam surat kepada pelanggan, terutama dalam kampanye pemasaran. Jika alamat yang tidak lengkap,, tidak akurat, atau menggandakan, sebagian besar surat yang terbuang.
Peningkatan Produktivitas. Pengguna mendapatkan pandangan perusahaan-macam informasi dari data warehouse. Ini adalah tujuan utama dari data warehouse. Di daerah di mana pandangan yang luas corporate- informasi secara alami memungkinkan perampingan proses dan operasi, Anda akan melihat keuntungan produktivitas. Misalnya, pandangan seluruh perusahaan pembelian pola-pola di sebuah department store besar dapat menghasilkan prosedur pembelian yang lebih baik dan strategi.
Handal Pengambilan Keputusan Strategis. Titik ini layak mengulangi. Jika data di gudang handal dan berkualitas tinggi, maka keputusan berdasarkan informasi akan suara. Tidak ada data warehouse dapat menambah nilai bisnis sampai data yang bersih dan berkualitas tinggi.
Jenis Data Masalah Kualitas Sebagai bagian dari pembahasan tentang mengapa kualitas data sangat penting dalam data warehouse, kami telah mantan plored karakteristik kualitas data . Karakteristik sendiri memiliki yang didemonstrasikan ed kebutuhan penting untuk kualitas data. Pembahasan manfaat dari memiliki kualitas data semakin memperkuat argumen untuk data bersih. Diskusi kita dari kebutuhan penting untuk kualitas data tidak lengkap sampai kita cepat berjalan melalui jenis masalah yang Anda mungkin menghadapi jika data yang tercemar. Deskripsi jenis masalah akan meyakinkan Anda bahkan lebih bahwa kualitas data penting tertinggi. Jika 4% dari jumlah penjualan yang salah dalam sistem penagihan dari sebuah perusahaan $ 2 miliar, apa taksiran kerugian pendapatan? $ 80 juta. Apa yang terjadi ketika sebuah mail besar perusahaan penjualan katalog katalog kepada pelanggan dan prospek? Jika ada duplikat catatan untuk pelanggan yang sama dalam file pelanggan, kemudian, tergantung pada seberapa luas masalah lipatan du- adalah, perusahaan akan berakhir mengirimkan beberapa katalog untuk anak per- sama. Dalam sebuah survei independen baru-baru ini, bisnis dengan data warehouse ditanya tion-pertanyaan: Apa tantangan terbesar dalam pengembangan data warehouse dan penggunaan? Silakan lihat Gambar 13-2 untuk peringkat jawaban. Hampir setengah dari responden dinilai Data kualitatif





Sedang diterjemahkan, harap tunggu..
 
Bahasa lainnya
Dukungan alat penerjemahan: Afrikans, Albania, Amhara, Arab, Armenia, Azerbaijan, Bahasa Indonesia, Basque, Belanda, Belarussia, Bengali, Bosnia, Bulgaria, Burma, Cebuano, Ceko, Chichewa, China, Cina Tradisional, Denmark, Deteksi bahasa, Esperanto, Estonia, Farsi, Finlandia, Frisia, Gaelig, Gaelik Skotlandia, Galisia, Georgia, Gujarati, Hausa, Hawaii, Hindi, Hmong, Ibrani, Igbo, Inggris, Islan, Italia, Jawa, Jepang, Jerman, Kannada, Katala, Kazak, Khmer, Kinyarwanda, Kirghiz, Klingon, Korea, Korsika, Kreol Haiti, Kroat, Kurdi, Laos, Latin, Latvia, Lituania, Luksemburg, Magyar, Makedonia, Malagasi, Malayalam, Malta, Maori, Marathi, Melayu, Mongol, Nepal, Norsk, Odia (Oriya), Pashto, Polandia, Portugis, Prancis, Punjabi, Rumania, Rusia, Samoa, Serb, Sesotho, Shona, Sindhi, Sinhala, Slovakia, Slovenia, Somali, Spanyol, Sunda, Swahili, Swensk, Tagalog, Tajik, Tamil, Tatar, Telugu, Thai, Turki, Turkmen, Ukraina, Urdu, Uyghur, Uzbek, Vietnam, Wales, Xhosa, Yiddi, Yoruba, Yunani, Zulu, Bahasa terjemahan.

Copyright ©2024 I Love Translation. All reserved.

E-mail: