Problem solving The terms problems and problem solving occur many disc terjemahan - Problem solving The terms problems and problem solving occur many disc Bahasa Indonesia Bagaimana mengatakan

Problem solving The terms problems

Problem solving
The terms problems and problem solving occur many disciplines but are perhaps more closely related to mathematics than any other. Over the years much has been written about problems and problem solving giving rise to various schools of thought.
In mathematics education, problem solving has been emphasized since Polya's work in the 1940s. Polya, who is often considered the father of problem solving, describes it as follows
Solving a problem is finding the unknown means to a distinctly conceived end to find a way where no way is known off-hand. For a question to be a problem, it must present a challenge that cannot be resolved by some routine procedure. Problem solving is a process of accepting a challenge and striving to resolve it.
Polya believed that in order to solve a problem a student had first to come to terms with what the problem was really about. Once he or she had gained an insight into the problem only then could a plan for solving it be devised. When the plan had been carried out Polya emphasized the need to look back over the problem in terms of the solution. His four-step problem solving model, which has been used as the basis for many subsequent frameworks, can be summarized as:
1 understand the problem
2 devise a plan
3 carry out the plan
4 look bock
Schoenfeld (1989) discussed problem solving in terms of 'tasks to be solved'. He believes that for problem solving to occur a student must first be motivated to solve the problem and to have no obvious ways to do so. He states that, for any student, a mathematical problem is a task:
♦ in which the student is interested and engaged and for which they wish to obtain a resolution; and
♦ for which the student does not have readily accessible mathematical means by which to achieve that resolution.
Siemon and Booker (1990) have a similar view of problem solving, highlighting the need for the student to want or need to solve the problem individually or as a group and having no immediate means to do so. They go on to describe problem solving as a process of achieving the solution to a problem, often with identifiable beginning, middle and end phases. They state that a problem is a task or situation:
♦ that you want to or need to solve;
♦ that you believe you have some reasonable chance of solving, either individually or in a group; but
♦ for which you or the group have no immediately available solution strategy.
These views on problem solving highlight that a problem is a task for which there is no immediate or obvious solution and problem solving is the process students undertake when engaging with this task. Problem solving involves engaging in tasks for which the solution strategy is not immediately obvious. In order to discover the possible solution students need to draw on their current knowledge and processes and will often develop new knowledge and understandings as they progress towards a solution.
A key issue in problem solving is the idea of no immediately available or obvious solution. A task that is a problem for students in Year 1 would not necessarily be a problem for students in Year 7. Indeed a task that would be a problem for some students in a particular year level would not necessarily be a problem for all students in that year level.
This task would not be a problem for students in Year 7 as most students would be able to think of an immediate solution. Their mathematical knowledge and understanding of the concept of multiplication and multiplication basic facts would lead them immediately to think about 3 fives and come up with the solution of 15 puppies. This task therefore could not be considered a problem for these students.
However, for students in Year 1 who would in most cases not have this mathematical knowledge and understanding, it could well be conceived as a problem for which there is no immediate or obvious solution. In most situations a Year 1 student would need to think about how to solve this problem and would perhaps come up with the possibility of using materials and counting or drawing a diagram and counting.
When selecting problems for a class program it is important to keep in mind the concept of problem solving as a task or situation for which there is no immediate or obvious solution. At times in a classroom students may be 'problem solving' when in fact they are reading 'problems' and immediately knowing what to do to solve this 'problem'. In these situations the activity being undertaken by the students could not in fact be considered to be problem solving.
Strategies and problem solving
In 1965 Polya observed that students needed techniques to help them plan for solutions. This observation provided the catalyst for over two decades of research into the identification and utilization of problem solving strategies. The outcome of this research ultimately led to strategy driven problem solving programs in schools. These programs centered around the teaching of particular strategies such as make a list, work backwards, guess and check, where the strategy rather than the problem was the focus. A strategy was introduced and then the class would solve a variety of problems using the identified strategy.
For example, the strategy of 'make a list' would be taught and then the class would spend time solving problems by making a list. Students did not need to understand or come to terms with problems as they knew immediately each one could be solved using the particular
. This method of teaching problem solving continued for some time until researchers began to notice that students didn't necessarily become more proficient at problem solving in situations outside of the specific lessons. This thinking was not generalised into different situations where the students had to identify the appropriate strategy for themselves.
Research began to focus on problem solving and cognition and the methodology of problem solving. This emphasis led to changes in the nature of the mathematics curriculum itself and strengthened the importance of problem solving in school mathematics. Throughout the 1970s the mathematics community expressed the need for clearer guidelines and a more concise sense of direction. The National Council of Teachers of Mathematics (NCTM, 1980a) responded to these concerns with a document titled Agenda for Action: Recommendations for School Mathematics of the 1980s, which outlined eight explicit recommendations, the first of which was that problem solving should be the focus of school mathematics.
By 1989 the NCTM had taken its earlier recommendation even further and was now stating that problem solving must be integral to all mathematical activities. Problem solving was to be viewed not as a separate topic but as a process that should permeate the entire mathematics program from beginning to end. Viewing problem solving in this way would provide the context in which concepts and processes could be learned. This approach enables mathematical constructs to be grounded in and emerge from students' own solutions to problems that are, to them, real and genuine. Hence, as problem solving as such is an individualized Endeavour, mathematics becomes both functional and meaningful to each individual.
Similar calls were made in Australia. State and territory education departments began to interpret problem solving as a process, placing importance on the procedures and strategies used by the students rather than their answers. Problem solving was often viewed as the central focus of the curriculum and integrated across all mathematical areas.
In 1991 the Australian Education Council published A National Statement on Mathematics for Australian Schools. The purpose of this statement was to provide a framework around which states and territories and thus schools could build their mathematics curriculum. It identifies important components of mathematics education and stales that experiences with problems should he provided to enable students to use a wide range of problem solving strategies across all topics in mathematics. This document is still the central framework for the various syllabuses that have evolved.
Today many educators believe that the most important goal of the study of mathematics is fostering and developing students' abilities to solve problems. Yet, as mentioned, adherence to traditional styles of teaching leads to difficulties with problem solving. For problem solving to be worthwhile it is essential that teachers view it as a valuable, motivating and pedagogically sound approach for introducing, developing and applying concepts and processes.
Small-group instruction, team teaching, learning centers and technology such as computers and calculators have become more common in classrooms. 1 however, this style of teaching is often only conducted after the 'real work' is completed—after the content involving rules and procedures has been taught. It is usually not used as a means of teaching a concept but rather as consolidation or reinforcement. Activities where students arc seen to be talking, interacting and even enjoying themselves are not always accepted as pedagogically sound. Yet, this is often how students learn best—in environments where they can engage in activities that allow exploration, language and socialization from which they can make sense of complex ideas.
Worthwhile problems and building new knowledge
For students to really develop mathematical ways of thinking and number sense it is essential
for good worthwhile problems to be selected for the class program. A teacher needs not only
to select problems for which there are no immediate or obvious solutions but also to select
problems which will consolidate, extend and stimulate mathematical knowledge and
understandings.
When choosing problems for a particular mathematics classroom a teacher needs to thoroughly explore the problem and the possible mathematical ideas which can be brought by the students when working through
0/5000
Dari: -
Ke: -
Hasil (Bahasa Indonesia) 1: [Salinan]
Disalin!
Problem solving
The terms problems and problem solving occur many disciplines but are perhaps more closely related to mathematics than any other. Over the years much has been written about problems and problem solving giving rise to various schools of thought.
In mathematics education, problem solving has been emphasized since Polya's work in the 1940s. Polya, who is often considered the father of problem solving, describes it as follows
Solving a problem is finding the unknown means to a distinctly conceived end to find a way where no way is known off-hand. For a question to be a problem, it must present a challenge that cannot be resolved by some routine procedure. Problem solving is a process of accepting a challenge and striving to resolve it.
Polya believed that in order to solve a problem a student had first to come to terms with what the problem was really about. Once he or she had gained an insight into the problem only then could a plan for solving it be devised. When the plan had been carried out Polya emphasized the need to look back over the problem in terms of the solution. His four-step problem solving model, which has been used as the basis for many subsequent frameworks, can be summarized as:
1 understand the problem
2 devise a plan
3 carry out the plan
4 look bock
Schoenfeld (1989) discussed problem solving in terms of 'tasks to be solved'. He believes that for problem solving to occur a student must first be motivated to solve the problem and to have no obvious ways to do so. He states that, for any student, a mathematical problem is a task:
♦ in which the student is interested and engaged and for which they wish to obtain a resolution; and
♦ for which the student does not have readily accessible mathematical means by which to achieve that resolution.
Siemon and Booker (1990) have a similar view of problem solving, highlighting the need for the student to want or need to solve the problem individually or as a group and having no immediate means to do so. They go on to describe problem solving as a process of achieving the solution to a problem, often with identifiable beginning, middle and end phases. They state that a problem is a task or situation:
♦ that you want to or need to solve;
♦ that you believe you have some reasonable chance of solving, either individually or in a group; but
♦ for which you or the group have no immediately available solution strategy.
These views on problem solving highlight that a problem is a task for which there is no immediate or obvious solution and problem solving is the process students undertake when engaging with this task. Problem solving involves engaging in tasks for which the solution strategy is not immediately obvious. In order to discover the possible solution students need to draw on their current knowledge and processes and will often develop new knowledge and understandings as they progress towards a solution.
A key issue in problem solving is the idea of no immediately available or obvious solution. A task that is a problem for students in Year 1 would not necessarily be a problem for students in Year 7. Indeed a task that would be a problem for some students in a particular year level would not necessarily be a problem for all students in that year level.
This task would not be a problem for students in Year 7 as most students would be able to think of an immediate solution. Their mathematical knowledge and understanding of the concept of multiplication and multiplication basic facts would lead them immediately to think about 3 fives and come up with the solution of 15 puppies. This task therefore could not be considered a problem for these students.
However, for students in Year 1 who would in most cases not have this mathematical knowledge and understanding, it could well be conceived as a problem for which there is no immediate or obvious solution. In most situations a Year 1 student would need to think about how to solve this problem and would perhaps come up with the possibility of using materials and counting or drawing a diagram and counting.
When selecting problems for a class program it is important to keep in mind the concept of problem solving as a task or situation for which there is no immediate or obvious solution. At times in a classroom students may be 'problem solving' when in fact they are reading 'problems' and immediately knowing what to do to solve this 'problem'. In these situations the activity being undertaken by the students could not in fact be considered to be problem solving.
Strategies and problem solving
In 1965 Polya observed that students needed techniques to help them plan for solutions. This observation provided the catalyst for over two decades of research into the identification and utilization of problem solving strategies. The outcome of this research ultimately led to strategy driven problem solving programs in schools. These programs centered around the teaching of particular strategies such as make a list, work backwards, guess and check, where the strategy rather than the problem was the focus. A strategy was introduced and then the class would solve a variety of problems using the identified strategy.
For example, the strategy of 'make a list' would be taught and then the class would spend time solving problems by making a list. Students did not need to understand or come to terms with problems as they knew immediately each one could be solved using the particular
. This method of teaching problem solving continued for some time until researchers began to notice that students didn't necessarily become more proficient at problem solving in situations outside of the specific lessons. This thinking was not generalised into different situations where the students had to identify the appropriate strategy for themselves.
Research began to focus on problem solving and cognition and the methodology of problem solving. This emphasis led to changes in the nature of the mathematics curriculum itself and strengthened the importance of problem solving in school mathematics. Throughout the 1970s the mathematics community expressed the need for clearer guidelines and a more concise sense of direction. The National Council of Teachers of Mathematics (NCTM, 1980a) responded to these concerns with a document titled Agenda for Action: Recommendations for School Mathematics of the 1980s, which outlined eight explicit recommendations, the first of which was that problem solving should be the focus of school mathematics.
By 1989 the NCTM had taken its earlier recommendation even further and was now stating that problem solving must be integral to all mathematical activities. Problem solving was to be viewed not as a separate topic but as a process that should permeate the entire mathematics program from beginning to end. Viewing problem solving in this way would provide the context in which concepts and processes could be learned. This approach enables mathematical constructs to be grounded in and emerge from students' own solutions to problems that are, to them, real and genuine. Hence, as problem solving as such is an individualized Endeavour, mathematics becomes both functional and meaningful to each individual.
Similar calls were made in Australia. State and territory education departments began to interpret problem solving as a process, placing importance on the procedures and strategies used by the students rather than their answers. Problem solving was often viewed as the central focus of the curriculum and integrated across all mathematical areas.
In 1991 the Australian Education Council published A National Statement on Mathematics for Australian Schools. The purpose of this statement was to provide a framework around which states and territories and thus schools could build their mathematics curriculum. It identifies important components of mathematics education and stales that experiences with problems should he provided to enable students to use a wide range of problem solving strategies across all topics in mathematics. This document is still the central framework for the various syllabuses that have evolved.
Today many educators believe that the most important goal of the study of mathematics is fostering and developing students' abilities to solve problems. Yet, as mentioned, adherence to traditional styles of teaching leads to difficulties with problem solving. For problem solving to be worthwhile it is essential that teachers view it as a valuable, motivating and pedagogically sound approach for introducing, developing and applying concepts and processes.
Small-group instruction, team teaching, learning centers and technology such as computers and calculators have become more common in classrooms. 1 however, this style of teaching is often only conducted after the 'real work' is completed—after the content involving rules and procedures has been taught. It is usually not used as a means of teaching a concept but rather as consolidation or reinforcement. Activities where students arc seen to be talking, interacting and even enjoying themselves are not always accepted as pedagogically sound. Yet, this is often how students learn best—in environments where they can engage in activities that allow exploration, language and socialization from which they can make sense of complex ideas.
Worthwhile problems and building new knowledge
For students to really develop mathematical ways of thinking and number sense it is essential
for good worthwhile problems to be selected for the class program. A teacher needs not only
to select problems for which there are no immediate or obvious solutions but also to select
problems which will consolidate, extend and stimulate mathematical knowledge and
understandings.
When choosing problems for a particular mathematics classroom a teacher needs to thoroughly explore the problem and the possible mathematical ideas which can be brought by the students when working through
Sedang diterjemahkan, harap tunggu..
Hasil (Bahasa Indonesia) 2:[Salinan]
Disalin!
Pemecahan masalah
Masalah syarat dan pemecahan masalah terjadi banyak disiplin ilmu tetapi mungkin lebih terkait erat dengan matematika dari yang lain. Selama bertahun-tahun banyak yang telah ditulis tentang masalah dan memecahkan sehingga menimbulkan berbagai aliran pemikiran masalah.
Dalam pendidikan matematika, pemecahan masalah telah ditekankan sejak karya Polya di tahun 1940-an. Polya, yang sering dianggap sebagai bapak pemecahan masalah, menjelaskan sebagai berikut
Pemecahan masalah adalah menemukan cara yang tidak diketahui ke akhir jelas disusun untuk menemukan cara di mana tidak ada cara dikenal off-tangan. Untuk pertanyaan menjadi masalah, itu harus menjadi tantangan yang tidak dapat diselesaikan oleh beberapa prosedur rutin. Pemecahan masalah adalah proses menerima tantangan dan berjuang untuk mengatasinya.
Polya percaya bahwa untuk memecahkan masalah siswa memiliki pertama untuk berdamai dengan apa masalahnya benar-benar tentang. Begitu ia telah mendapatkan wawasan ke dalam masalah hanya kemudian bisa rencana untuk memecahkan masalah tersebut akan dibuat. Ketika rencana telah dilakukan Polya menekankan perlunya melihat kembali masalah dalam hal solusi. Nya empat langkah pemecahan masalah model, yang telah digunakan sebagai dasar bagi banyak kerangka selanjutnya, dapat diringkas sebagai:
1 memahami masalah
2 merancang rencana
3 melaksanakan rencana
4 tampilan Bock
Schoenfeld pemecahan (1989) membahas masalah dalam hal dari 'tugas yang harus diselesaikan. Ia percaya bahwa untuk memecahkan terjadi mahasiswa masalah pertama harus termotivasi untuk memecahkan masalah dan tidak memiliki cara yang jelas untuk melakukannya. Dia menyatakan bahwa, untuk setiap siswa, masalah matematika adalah tugas:
♦ di mana siswa tertarik dan terlibat dan yang mereka ingin mendapatkan resolusi; dan
♦ yang siswa tidak memiliki mudah diakses berarti matematika yang digunakan untuk mencapai resolusi.
Siemon dan Booker (1990) memiliki pandangan serupa pemecahan masalah, menyoroti perlunya bagi siswa untuk ingin atau perlu memecahkan masalah secara individu atau sebagai kelompok dan tidak memiliki sarana langsung untuk melakukannya. Mereka pergi untuk menjelaskan pemecahan masalah sebagai proses pencapaian solusi untuk masalah, sering dengan diidentifikasi fase awal, tengah dan akhir. Mereka menyatakan bahwa masalah adalah tugas atau situasi:
♦ bahwa Anda ingin atau perlu untuk memecahkan;
♦ bahwa Anda percaya bahwa Anda memiliki beberapa kesempatan yang masuk akal pemecahan, baik secara individual maupun kelompok; tapi
♦ yang Anda atau kelompok tidak memiliki strategi solusi segera tersedia.
Pandangan ini pada pemecahan masalah sorot bahwa masalah adalah tugas yang tidak ada solusi dan pemecahan masalah langsung atau jelas adalah siswa proses melakukan ketika terlibat dengan tugas ini. Pemecahan masalah melibatkan terlibat dalam tugas-tugas yang strategi solusi tidak segera jelas. Dalam rangka untuk menemukan solusi yang mungkin siswa perlu untuk menarik pengetahuan dan proses saat mereka dan sering akan mengembangkan pengetahuan dan pemahaman baru saat mereka kemajuan menuju solusi.
Isu kunci dalam pemecahan masalah adalah gagasan ada solusi segera tersedia atau jelas. Sebuah tugas yang merupakan masalah bagi siswa di Tahun 1 belum tentu menjadi masalah bagi siswa di Tahun 7. Memang tugas yang akan menjadi masalah bagi beberapa siswa di tingkat tahun tertentu belum tentu menjadi masalah bagi semua siswa dalam tingkat tahun.
Tugas ini tidak akan menjadi masalah bagi siswa di Tahun 7 karena kebanyakan siswa akan mampu memikirkan solusi segera. Pengetahuan matematika dan pemahaman konsep perkalian dan perkalian fakta-fakta dasar akan memimpin mereka segera memikirkan 3 balita dan datang dengan solusi dari 15 anak anjing. Tugas ini karena itu tidak bisa dianggap masalah bagi siswa tersebut.
Namun, bagi siswa di Tahun 1 yang akan dalam banyak kasus tidak memiliki pengetahuan matematika dan pemahaman, bisa juga dipahami sebagai masalah yang tidak ada solusi langsung atau jelas . Dalam kebanyakan situasi Tahun 1 mahasiswa perlu berpikir tentang bagaimana untuk memecahkan masalah ini dan akan mungkin datang dengan kemungkinan menggunakan bahan dan penghitungan atau menggambar diagram dan menghitung.
Ketika memilih masalah untuk program kelas itu penting untuk tetap keberatan konsep pemecahan masalah sebagai tugas atau situasi yang tidak ada solusi langsung atau jelas. Pada saat-saat dalam siswa kelas mungkin padahal sebenarnya mereka membaca 'masalah' dan segera mengetahui apa yang harus dilakukan untuk memecahkan masalah ini 'masalah' 'pemecahan masalah'. Dalam situasi ini kegiatan yang dilakukan oleh siswa tidak bisa bahkan dianggap sebagai pemecahan masalah.
Strategi dan pemecahan masalah
Polya Pada tahun 1965 mengamati bahwa siswa teknik yang diperlukan untuk membantu mereka merencanakan solusi. Pengamatan ini memberikan katalis selama lebih dari dua dekade penelitian identifikasi dan pemanfaatan strategi pemecahan masalah. Hasil penelitian ini pada akhirnya menyebabkan masalah strategi pemecahan didorong program di sekolah. Program-program yang berpusat di sekitar pengajaran strategi tertentu seperti membuat daftar, bekerja mundur, menebak dan periksa, di mana strategi daripada masalahnya adalah fokus. Strategi diperkenalkan dan kemudian kelas akan menyelesaikan berbagai masalah dengan menggunakan strategi diidentifikasi.
Sebagai contoh, strategi 'membuat daftar' akan diajarkan dan kemudian kelas akan menghabiskan memecahkan masalah waktu dengan membuat daftar. Siswa tidak perlu memahami atau datang untuk berdamai dengan masalah karena mereka tahu segera masing-masing dapat diselesaikan dengan menggunakan tertentu
. Metode ini masalah mengajar pemecahan berlanjut selama beberapa waktu sampai peneliti mulai melihat bahwa siswa tidak selalu menjadi lebih mahir dalam memecahkan dalam situasi di luar pelajaran tertentu masalah. Pemikiran ini tidak umum dalam situasi yang berbeda di mana siswa harus mengidentifikasi strategi yang tepat untuk diri mereka sendiri.
Penelitian mulai fokus pada pemecahan masalah dan kognisi dan metodologi pemecahan masalah. Penekanan ini menyebabkan perubahan sifat kurikulum matematika itu sendiri dan memperkuat pentingnya pemecahan masalah dalam matematika sekolah. Sepanjang tahun 1970-an komunitas matematika menyatakan perlunya pedoman yang lebih jelas dan rasa yang lebih ringkas arah. Dewan Nasional Guru Matematika (NCTM, 1980a) menanggapi masalah ini dengan dokumen berjudul Agenda Aksi: Rekomendasi untuk Sekolah Matematika tahun 1980-an, yang diuraikan delapan rekomendasi eksplisit, yang pertama adalah bahwa pemecahan harus menjadi fokus masalah matematika sekolah.
Pada 1989 NCTM telah mengambil rekomendasi yang sebelumnya lebih jauh dan sekarang menyatakan bahwa pemecahan masalah harus menjadi bagian integral semua kegiatan matematika. Pemecahan masalah itu harus dilihat bukan sebagai topik yang terpisah tetapi sebagai sebuah proses yang harus menyerap program matematika seluruh dari awal sampai akhir. Melihat pemecahan dengan cara ini masalah akan memberikan konteks di mana konsep dan proses bisa dipelajari. Pendekatan ini memungkinkan konstruksi matematika harus didasarkan pada dan muncul dari solusi siswa sendiri untuk masalah yang, bagi mereka, nyata dan asli. Oleh karena itu, sebagai pemecahan seperti masalah adalah Endeavour individual, matematika menjadi fungsional dan bermakna bagi setiap individu.
panggilan serupa dilakukan di Australia. Negara dan pendidikan wilayah departemen mulai menafsirkan pemecahan masalah sebagai suatu proses, menempatkan pentingnya pada prosedur dan strategi yang digunakan oleh siswa daripada jawaban mereka. Pemecahan masalah sering dipandang sebagai fokus utama dari kurikulum dan terintegrasi di semua bidang matematika.
Pada tahun 1991 Dewan Pendidikan Australia menerbitkan Pernyataan Nasional Matematika untuk Sekolah Australia. Tujuan dari pernyataan ini adalah untuk memberikan kerangka sekitar yang negara bagian dan teritori dan dengan demikian sekolah dapat membangun kurikulum matematika mereka. Ini mengidentifikasi komponen penting dari pendidikan matematika dan Stales bahwa pengalaman dengan masalah yang harus ia disediakan untuk memungkinkan siswa untuk menggunakan berbagai strategi pemecahan masalah di semua topik dalam matematika. Dokumen ini masih kerangka pusat untuk berbagai silabus yang telah berevolusi.
Saat ini banyak pendidik percaya bahwa tujuan yang paling penting dari studi matematika membina dan mengembangkan kemampuan siswa untuk memecahkan masalah. Namun, seperti yang disebutkan, kepatuhan terhadap gaya tradisional mengajar menyebabkan kesulitan dengan pemecahan masalah. Untuk memecahkan menjadi berharga adalah penting bahwa guru melihatnya sebagai pendekatan yang berharga, memotivasi dan pedagogis suara untuk memperkenalkan, mengembangkan dan menerapkan konsep-konsep dan proses masalah.
instruksi Kelompok Kecil, team teaching, pusat belajar dan teknologi seperti komputer dan kalkulator memiliki menjadi lebih umum di kelas. 1 Namun, gaya mengajar sering hanya dilakukan setelah 'kerja nyata' selesai-setelah konten yang melibatkan aturan dan prosedur telah diajarkan. Hal ini biasanya tidak digunakan sebagai alat pengajaran konsep melainkan sebagai konsolidasi atau penguatan. Kegiatan dimana siswa busur terlihat berbicara, berinteraksi dan bahkan menikmati diri mereka sendiri tidak selalu diterima sebagai pedagogis suara. Namun, hal ini sering bagaimana siswa belajar terbaik dalam lingkungan di mana mereka dapat melakukan kegiatan yang memungkinkan eksplorasi, bahasa dan sosialisasi dari mana mereka dapat memahami ide-ide yang kompleks.
masalah berharga dan membangun pengetahuan baru
Untuk siswa untuk benar-benar mengembangkan cara-cara matematika berpikir dan nomor merasakan sangat penting
untuk masalah berharga baik untuk dipilih untuk program kelas. Seorang guru tidak hanya membutuhkan
untuk memilih masalah yang tidak ada solusi langsung atau jelas, tetapi juga untuk memilih
masalah yang akan mengkonsolidasikan, memperluas dan merangsang pengetahuan matematika dan
pemahaman.
Ketika memilih masalah untuk kelas matematika tertentu guru perlu untuk benar-benar mengeksplorasi masalah dan mungkin ide-ide matematika yang bisa dibawa oleh siswa saat bekerja melalui
Sedang diterjemahkan, harap tunggu..
 
Bahasa lainnya
Dukungan alat penerjemahan: Afrikans, Albania, Amhara, Arab, Armenia, Azerbaijan, Bahasa Indonesia, Basque, Belanda, Belarussia, Bengali, Bosnia, Bulgaria, Burma, Cebuano, Ceko, Chichewa, China, Cina Tradisional, Denmark, Deteksi bahasa, Esperanto, Estonia, Farsi, Finlandia, Frisia, Gaelig, Gaelik Skotlandia, Galisia, Georgia, Gujarati, Hausa, Hawaii, Hindi, Hmong, Ibrani, Igbo, Inggris, Islan, Italia, Jawa, Jepang, Jerman, Kannada, Katala, Kazak, Khmer, Kinyarwanda, Kirghiz, Klingon, Korea, Korsika, Kreol Haiti, Kroat, Kurdi, Laos, Latin, Latvia, Lituania, Luksemburg, Magyar, Makedonia, Malagasi, Malayalam, Malta, Maori, Marathi, Melayu, Mongol, Nepal, Norsk, Odia (Oriya), Pashto, Polandia, Portugis, Prancis, Punjabi, Rumania, Rusia, Samoa, Serb, Sesotho, Shona, Sindhi, Sinhala, Slovakia, Slovenia, Somali, Spanyol, Sunda, Swahili, Swensk, Tagalog, Tajik, Tamil, Tatar, Telugu, Thai, Turki, Turkmen, Ukraina, Urdu, Uyghur, Uzbek, Vietnam, Wales, Xhosa, Yiddi, Yoruba, Yunani, Zulu, Bahasa terjemahan.

Copyright ©2024 I Love Translation. All reserved.

E-mail: