Item discrimination, in contrast, reflects that ability of an item to  terjemahan - Item discrimination, in contrast, reflects that ability of an item to  Bahasa Indonesia Bagaimana mengatakan

Item discrimination, in contrast, r

Item discrimination, in contrast,
reflects that ability of an item to
differentiate between people with
similar levels of the trait. Critically,
an item’s ability to differentiate
between people is most precise at
trait ranges corresponding to the item
difficulty parameter. For example,
imagine we have two items, one with
a discrimination parameter of 1.0 and
a difficulty of -1.0, the other also with
a discrimination parameter of 1.0 but a
difficulty parameter of 1.0. Both items
are equally able to differentiate between
individuals, but at different regions of
the trait range.
The first item in this example would
be better at differentiating between
people with low levels of the trait,
while the latter item would be better
at differentiating between people with
high levels of the trait. Conversely, the
higher difficulty item would perform
poorly when used to differentiate people
at the low end of the trait range (people
low on the trait are all fairly likely to get
this ‘hard’ item ‘wrong’), and the low
difficulty item would perform poorly
for differentiating between people at the
high end of the trait range (people high
on the trait would all be fairly likely to
get this ‘easy’ item ‘correct’).
The difficulty and discrimination
parameters can be combined to provide
item Test Information Functions. By
combining these functions, we can
estimate the level of precision (i.e.,
reliability) of the entire scale across
the entire trait range. You can get a
good idea of how these parameters are
combined to provide test information
(I) by looking at the following equation:
(3.0) Ij
(θ) = αj
2
× Pj
(θi
) × (1- Pj
(θi
))
In this equation, αj
2
is the squared
item discrimination parameter for the
jth item, and Pj
(θi
) is the probability
of endorsing item j for individuals
with a given (i) level of trait θ. A Test
Information Function that looked like a
bell curve centered on a score of θ = 0
would indicate that the scale provided
the most information about participants
who were near the average level of the
trait, but provided progressively less
information about people at the high or
low extremes of the trait range.
Item Response Theory thus
provides information that is quite
0/5000
Dari: -
Ke: -
Hasil (Bahasa Indonesia) 1: [Salinan]
Disalin!
Item discrimination, in contrast, reflects that ability of an item to differentiate between people with similar levels of the trait. Critically, an item’s ability to differentiate between people is most precise at trait ranges corresponding to the item difficulty parameter. For example, imagine we have two items, one with a discrimination parameter of 1.0 and a difficulty of -1.0, the other also with a discrimination parameter of 1.0 but a difficulty parameter of 1.0. Both items are equally able to differentiate between individuals, but at different regions of the trait range. The first item in this example would be better at differentiating between people with low levels of the trait, while the latter item would be better at differentiating between people with high levels of the trait. Conversely, the higher difficulty item would perform poorly when used to differentiate people at the low end of the trait range (people low on the trait are all fairly likely to get this ‘hard’ item ‘wrong’), and the low difficulty item would perform poorly for differentiating between people at the high end of the trait range (people high on the trait would all be fairly likely to get this ‘easy’ item ‘correct’). The difficulty and discrimination parameters can be combined to provide item Test Information Functions. By combining these functions, we can estimate the level of precision (i.e., reliability) of the entire scale across the entire trait range. You can get a good idea of how these parameters are combined to provide test information (I) by looking at the following equation: (3.0) Ij(θ) = αj2 × Pj(θi) × (1- Pj(θi))In this equation, αj2 is the squared item discrimination parameter for the jth item, and Pj(θi) is the probability of endorsing item j for individuals with a given (i) level of trait θ. A Test Information Function that looked like a bell curve centered on a score of θ = 0 would indicate that the scale provided the most information about participants who were near the average level of the trait, but provided progressively less information about people at the high or low extremes of the trait range. Item Response Theory thus provides information that is quite
Sedang diterjemahkan, harap tunggu..
Hasil (Bahasa Indonesia) 2:[Salinan]
Disalin!
Item diskriminasi, kontras,
mencerminkan bahwa kemampuan item untuk
membedakan antara orang-orang dengan
tingkat yang sama dari sifat tersebut. Kritis,
kemampuan item untuk membedakan
antara orang yang paling tepat di
rentang sifat yang sesuai dengan item
parameter kesulitan. Sebagai contoh,
bayangkan kita memiliki dua item, satu dengan
parameter diskriminasi 1.0 dan
kesulitan dari -1.0, yang lain juga dengan
parameter diskriminasi 1,0 tetapi
parameter kesulitan 1.0. Kedua item
sama-sama mampu membedakan antara
individu, tetapi pada daerah yang berbeda dari
kisaran sifat.
Item pertama dalam contoh ini akan
lebih baik di membedakan antara
orang dengan tingkat rendah sifat tersebut,
sementara item kedua akan lebih baik
di membedakan antara orang dengan
tingkat tinggi sifat tersebut. Sebaliknya,
lebih tinggi tingkat kesulitan butir soal akan tampil
buruk bila digunakan untuk membedakan orang
pada akhir rendah dari kisaran sifat (orang
rendah pada sifat tersebut semua cukup kemungkinan untuk mendapatkan
item ini 'keras' 'salah'), dan rendah
item yang kesulitan akan berkinerja buruk
untuk membedakan antara orang-orang di
high end dari kisaran sifat (orang tinggi
pada sifat yang semua akan cukup mungkin untuk
mendapatkan ini 'mudah' item 'benar').
Kesulitan dan diskriminasi
parameter dapat dikombinasikan untuk menyediakan
barang Informasi Uji Fungsi. Dengan
menggabungkan fungsi-fungsi ini, kita dapat
memperkirakan tingkat presisi (yaitu,
keandalan) dari seluruh skala di
seluruh rentang sifat. Anda bisa mendapatkan
ide bagus tentang bagaimana parameter ini
dikombinasikan untuk memberikan informasi tes
(I) dengan melihat persamaan berikut:
(3.0) Ij
(θ) = αj
2
× Pj
(θi) × (1- Pj (θi)) Dalam persamaan ini, αj 2 adalah kuadrat parameter diskriminasi barang untuk barang-j, dan Pj (θi) adalah probabilitas dari mendukung barang j untuk individu dengan yang diberikan (i) tingkat sifat θ. Uji Fungsi Informasi yang tampak seperti kurva lonceng berpusat pada skor θ = 0 akan menunjukkan bahwa skala yang disediakan sebagian besar informasi tentang peserta yang berada di dekat tingkat rata-rata dari sifat, tetapi tersedia semakin sedikit informasi tentang orang-orang di tinggi atau ekstrem rendah kisaran sifat. Barang Response Theory sehingga memberikan informasi yang cukup





















Sedang diterjemahkan, harap tunggu..
 
Bahasa lainnya
Dukungan alat penerjemahan: Afrikans, Albania, Amhara, Arab, Armenia, Azerbaijan, Bahasa Indonesia, Basque, Belanda, Belarussia, Bengali, Bosnia, Bulgaria, Burma, Cebuano, Ceko, Chichewa, China, Cina Tradisional, Denmark, Deteksi bahasa, Esperanto, Estonia, Farsi, Finlandia, Frisia, Gaelig, Gaelik Skotlandia, Galisia, Georgia, Gujarati, Hausa, Hawaii, Hindi, Hmong, Ibrani, Igbo, Inggris, Islan, Italia, Jawa, Jepang, Jerman, Kannada, Katala, Kazak, Khmer, Kinyarwanda, Kirghiz, Klingon, Korea, Korsika, Kreol Haiti, Kroat, Kurdi, Laos, Latin, Latvia, Lituania, Luksemburg, Magyar, Makedonia, Malagasi, Malayalam, Malta, Maori, Marathi, Melayu, Mongol, Nepal, Norsk, Odia (Oriya), Pashto, Polandia, Portugis, Prancis, Punjabi, Rumania, Rusia, Samoa, Serb, Sesotho, Shona, Sindhi, Sinhala, Slovakia, Slovenia, Somali, Spanyol, Sunda, Swahili, Swensk, Tagalog, Tajik, Tamil, Tatar, Telugu, Thai, Turki, Turkmen, Ukraina, Urdu, Uyghur, Uzbek, Vietnam, Wales, Xhosa, Yiddi, Yoruba, Yunani, Zulu, Bahasa terjemahan.

Copyright ©2025 I Love Translation. All reserved.

E-mail: