out in instruments such as the Brabender Amylo/Viscograph. Here the he terjemahan - out in instruments such as the Brabender Amylo/Viscograph. Here the he Bahasa Indonesia Bagaimana mengatakan

out in instruments such as the Brab

out in instruments such as the Brabender Amylo/Viscograph. Here the heating
rate is usually 1.5°C/min, and the heating is performed during stirring. After
a holding period (10 to 30 min) typically at 95°C, cooling at 1.5°C/min is
performed. The viscosity (measured in Brabender units [BU]) is recorded as
a function of temperature; a typical viscogram is illustrated in Figure 10.6.
The Rapid Visco Analyzer (RVA) is emerging as a more popular alternative
because of the need for smaller sample amounts and shorter analyzing times
[180a,b].
For the application of starch in a food process, the rheological behavior
during different temperature regimens is of interest, and some of these aspects
are examined in a viscogram. The increase in viscosity during heating is of
interest in relation to the equipment used. Changes in viscosity during a
cooking period give indications of the stability, and the changes occurring
during cooling might show the consistency of the product when consumed;
however, products are stored either at room temperature or in refrigerators or
freezers, and during storage changes in rheological properties occur. If the
product is heated again before consumption, new changes in rheological properties can be expected. Moreover, process conditions might be very different
from the conditions in an instrument such as the Amylograph. Thus, a broad
range of different rheological measurements might be required to fully characterize a starch in relation to its utilization in a certain food product. In the
following text, results obtained by fundamental rheological measurements are
reported. The starch gel is characterized with certain moduli, such as shear
FIGURE 10.6The morphological changes in wheat starch granules [63] shown
together with the changes in viscosity during heating.
Viscosity
75
Temperature (°C)
95
© 2006 by Taylor & Francis Group, LLC
Starch: Physicochemical and Functional Aspects 423
modulus (G), storage modulus (G′), loss modulus (G″), or complex modulus
(G*). The phase angle (δ) is used to indicate the degree of elasticity.
To understand the rheological behavior of starch it is helpful to regard the
gelatinized starch suspension as a composite material composed of a dispersed
phase (starch granules) in a continuous polymer solution (amylose–amylopectin) [152,153,157]. The rheological properties of such a system depend on
properties of the components themselves as well as their ratio and interactions
between them [93]. In the following sections, the rheological properties of the
components (i.e., amylose and amylopectin) alone or in mixtures are described.
The rheological properties of starch gels, during gelatinization, during storage,
and in relation to freeze–thaw stability are then described, as well as how these
properties can be modified by the processing conditions.
10.5.1 AMYLOSEGELATION ANDAMYLOSEGELS
Amylose solutions are unstable at room temperature. They will show turbidity
and eventually form a precipitate (from dilute solutions) or a gel (from concentrated solutions). With time, syneresis often occurs (i.e., the formation of
a liquid film on top of the gel). To explain the mechanism for this behavior,
the gelling of amylose can be compared with the gelling of other linear
polymers.
The first step in the gelation of amylose is the formation of a network.
For quenching of amylose solutions (i.e., rapid cooling from a hot solution),
it has been shown that for concentrations above a certain value (C*, the
overlapping concentration), a gel is formed, whereas for concentrations below
C* a precipitate is formed [147]. The problem is how to determine C*, and it
has been suggested that the gel formation concentration (C0
)is somewhat
below C* [181]. Amylose was shown to form a gel at a concentration greater
than 1.5% (w/w), and above this concentration Gwas proportional to C7
[115]
0/5000
Dari: -
Ke: -
Hasil (Bahasa Indonesia) 1: [Salinan]
Disalin!
dalam instrumen seperti Brabender Amylo/Viscograph. Sini pemanasantingkat biasanya 1,5 ° C/menit, dan pemanasan dilakukan selama aduk. Setelahperiode memegang (10-30 min) biasanya pada 95° C, pendinginan pada 1,5 ° C/menit adalahdilakukan. Viskositas (diukur dalam unit Brabender [BU]) dicatatkanfungsi dari suhu; viscogram khas diilustrasikan pada gambar 10.6.Cepat Visco Analyzer (RVA) yang muncul sebagai alternatif yang lebih populerkarena kebutuhan untuk jumlah sample yang lebih kecil dan lebih pendek kali menganalisis[180a, b].Untuk aplikasi Pati dalam proses makanan, perilaku rheologicalselama rejimen suhu berbeda adalah menarik, dan beberapa aspek iniditeliti dalam viscogram. Peningkatan viskositas selama pemanasan adalahmenarik dalam kaitannya dengan peralatan yang digunakan. Perubahan Viskositas selamamemasak periode memberikan indikasi stabilitas, dan perubahan yang terjadisaat pendinginan mungkin menunjukkan konsistensi produk ketika dikonsumsi;Namun, produk disimpan pada suhu kamar atau dalam lemari es ataufreezer, dan penyimpanan perubahan dalam rheological pada terjadi. JikaProduk dipanaskan lagi sebelum konsumsi, perubahan baru di rheological pada dapat diharapkan. Selain itu, kondisi proses mungkin sangat berbedadari kondisi di instrumen seperti Amylograph. Dengan demikian, luasRentang pengukuran rheological yang berbeda mungkin diperlukan untuk sepenuhnya mencirikan Pati dalam kaitannya dengan pemanfaatannya dalam produk makanan tertentu. Dalammengikuti teks, hasil yang diperoleh dengan pengukuran rheological mendasar yangmelaporkan. Gel Pati ditandai dengan modul tertentu, seperti geserGAMBAR 10.6The morfologi perubahan gandum Pati butiran [63] ditampilkanbersama-sama dengan perubahan viskositas selama pemanasan.Viskositas75Suhu (° C)95© 2006 oleh Taylor & Francis Group, LLCPati: Secara fisikokimia maupun fungsional aspek 423modulus (G), modulus penyimpanan (G′), badan modulus (G″), atau kompleks modulus(G*). Sudut fase (δ) digunakan untuk menunjukkan tingkat elastisitas.Untuk memahami perilaku rheological Pati sangat membantu untuk menganggapsuspensi Pati gelatinized sebagai bahan komposit terdiri dari tersebarfase (pati butiran) dalam larutan polimer terus-menerus (amilosa – amilopektin) [152,153,157]. Rheological pada sistem tersebut tergantung padaProperti komponen sendiri serta rasio dan interaksi merekaantara mereka [93]. Di bagian berikut, rheological padakomponen (yaitu, amilosa dan amilopektin) sendiri atau campuran dijelaskan.Rheological pada gel Pati, selama gelatinization, Penyimpanan,dan dalam hubungannya dengan stabilitas beku-cair kemudian dijelaskan, serta bagaimanaProperti dapat dimodifikasi oleh kondisi pengolahan.10.5.1 AMYLOSEGELATION ANDAMYLOSEGELSAmilosa solusi tidak stabil pada suhu kamar. Mereka akan menunjukkan kekeruhandan akhirnya membentuk percepatan (dari encer solusi) atau gel (dari terkonsentrasi solusi). Dengan waktu, syneresis sering terjadi (yaitu, pembentukanfilm cair di atas gel). Untuk menjelaskan mekanisme untuk perilaku ini,gelling amilosa dapat dibandingkan dengan gelling lain linearpolimer.Langkah pertama dalam gelation amilosa adalah pembentukan jaringan.Untuk kemasukan amilosa solusi (yaitu, pendinginan cepat dari solusi yang panas),telah ditunjukkan bahwa untuk konsentrasi di atas nilai tertentu (C *,tumpang tindih konsentrasi), gel terbentuk, sedangkan untuk konsentrasi di bawah iniC * percepatan adalah membentuk [147]. Masalahnya adalah bagaimana menentukan C *, dan itutelah diusulkan bahwa konsentrasi pembentukan gel (C0) agakdi bawah C * [181]. Amilosa ditunjukkan untuk membentuk gel pada konsentrasi yang lebih besardari 1,5% (w/w), dan di atas ini konsentrasi Gwas proporsional C7[115]
Sedang diterjemahkan, harap tunggu..
Hasil (Bahasa Indonesia) 2:[Salinan]
Disalin!
dalam instrumen seperti Brabender Amylo / Viscograph. Berikut pemanasan
tingkat biasanya 1,5 ° C / menit, dan pemanasan dilakukan selama pengadukan. Setelah
periode holding (10 sampai 30 menit) biasanya pada 95 ° C, pendinginan pada 1,5 ° C / menit
dilakukan. Viskositas (diukur dalam Brabender unit [BU]) dicatat sebagai
fungsi temperatur; sebuah viscogram khas diilustrasikan pada Gambar 10.6.
Rapid Visco Analyzer (RVA) yang muncul sebagai alternatif yang lebih populer
karena kebutuhan untuk jumlah sampel yang lebih kecil dan waktu analisis yang lebih pendek
[180A, b].
Untuk aplikasi pati dalam proses makanan , perilaku rheologi
selama rejimen suhu yang berbeda yang menarik, dan beberapa aspek ini
diperiksa dalam viscogram a. Peningkatan viskositas selama pemanasan adalah
bunga dalam kaitannya dengan peralatan yang digunakan. Perubahan viskositas selama
periode memasak memberikan indikasi stabilitas, dan perubahan yang terjadi
selama pendinginan mungkin menunjukkan konsistensi produk ketika dikonsumsi,
namun produk yang disimpan baik pada suhu kamar atau dalam lemari es atau
freezer, dan selama perubahan penyimpanan di rheologi sifat terjadi. Jika
produk dipanaskan lagi sebelum dikonsumsi, perubahan baru dalam sifat reologi dapat diharapkan. Selain itu, kondisi proses mungkin sangat berbeda
dengan kondisi pada instrumen seperti Amylograph. Dengan demikian, luas
berbagai pengukuran rheologi yang berbeda mungkin diperlukan untuk sepenuhnya ciri pati dalam kaitannya dengan pemanfaatannya dalam produk makanan tertentu. Dalam
teks berikut, hasil yang diperoleh oleh dasar pengukuran rheologi yang
dilaporkan. Pati gel ditandai dengan modulus tertentu, seperti geser
GAMBAR 10.6The perubahan morfologi granula pati gandum [63] ditampilkan
bersama-sama dengan perubahan viskositas selama pemanasan.
Viskositas
75
Suhu (° C)
95
© 2006 oleh Taylor & Francis Group, LLC
Pati: fisiko dan Aspek Fungsional 423
modulus (G), modulus penyimpanan (G '), kehilangan modulus (G "), atau modulus kompleks
(G *). Sudut fase (δ) digunakan untuk menunjukkan tingkat elastisitas.
Untuk memahami perilaku rheologi pati akan sangat membantu untuk menganggap
suspensi pati gelatinized sebagai bahan komposit yang terdiri dari tersebar
fase (pati butiran) dalam larutan polimer kontinyu ( amilosa-amilopektin) [152153157]. Sifat reologi sistem tersebut tergantung pada
sifat dari komponen sendiri serta rasio mereka dan interaksi
antara mereka [93]. Pada bagian berikut, sifat-sifat reologi dari
komponen (yaitu, amilosa dan amilopektin) sendiri atau dalam campuran dijelaskan.
Sifat reologi pati gel, selama gelatinisasi, selama penyimpanan,
dan dalam kaitannya dengan freeze-thaw stabilitas kemudian dijelaskan, serta bagaimana
sifat dapat dimodifikasi oleh kondisi pengolahan.
10.5.1 AMYLOSEGELATION ANDAMYLOSEGELS
solusi Amilosa tidak stabil pada suhu kamar. Mereka akan menunjukkan kekeruhan
dan akhirnya membentuk endapan (dari larutan encer) atau gel (dari larutan pekat). Dengan waktu, sineresis sering terjadi (yaitu, pembentukan
film cairan di atas gel). Untuk menjelaskan mekanisme perilaku ini,
para pembentuk gel amilosa dapat dibandingkan dengan pembentuk gel dari linear lainnya
polimer.
Langkah pertama dalam gelasi amilosa adalah pembentukan jaringan.
Untuk pendinginan solusi amilosa (yaitu, pendinginan cepat dari larutan panas),
telah menunjukkan bahwa untuk konsentrasi di atas nilai tertentu (C *, yang
konsentrasi tumpang tindih), gel terbentuk, sedangkan untuk konsentrasi di bawah
C * terbentuk endapan [147]. Masalahnya adalah bagaimana menentukan C *, dan
telah menyarankan bahwa konsentrasi pembentukan gel (C0
) agak
di bawah C * [181]. Amilosa ditunjukkan untuk membentuk gel pada konsentrasi yang lebih besar
dari 1,5% (b / b), dan di atas konsentrasi ini GWAS sebanding dengan C7
[115]
Sedang diterjemahkan, harap tunggu..
 
Bahasa lainnya
Dukungan alat penerjemahan: Afrikans, Albania, Amhara, Arab, Armenia, Azerbaijan, Bahasa Indonesia, Basque, Belanda, Belarussia, Bengali, Bosnia, Bulgaria, Burma, Cebuano, Ceko, Chichewa, China, Cina Tradisional, Denmark, Deteksi bahasa, Esperanto, Estonia, Farsi, Finlandia, Frisia, Gaelig, Gaelik Skotlandia, Galisia, Georgia, Gujarati, Hausa, Hawaii, Hindi, Hmong, Ibrani, Igbo, Inggris, Islan, Italia, Jawa, Jepang, Jerman, Kannada, Katala, Kazak, Khmer, Kinyarwanda, Kirghiz, Klingon, Korea, Korsika, Kreol Haiti, Kroat, Kurdi, Laos, Latin, Latvia, Lituania, Luksemburg, Magyar, Makedonia, Malagasi, Malayalam, Malta, Maori, Marathi, Melayu, Mongol, Nepal, Norsk, Odia (Oriya), Pashto, Polandia, Portugis, Prancis, Punjabi, Rumania, Rusia, Samoa, Serb, Sesotho, Shona, Sindhi, Sinhala, Slovakia, Slovenia, Somali, Spanyol, Sunda, Swahili, Swensk, Tagalog, Tajik, Tamil, Tatar, Telugu, Thai, Turki, Turkmen, Ukraina, Urdu, Uyghur, Uzbek, Vietnam, Wales, Xhosa, Yiddi, Yoruba, Yunani, Zulu, Bahasa terjemahan.

Copyright ©2025 I Love Translation. All reserved.

E-mail: