Figure 7 plots the relation between normalized fracture toughness and  terjemahan - Figure 7 plots the relation between normalized fracture toughness and  Bahasa Indonesia Bagaimana mengatakan

Figure 7 plots the relation between

Figure 7 plots the relation between normalized fracture toughness and bending strength of composites to clarify the sensitivity of properties to the cross-linking densities. In the region of high cross-linking densities, the normalized fracture toughness was extremely sensitive to the cross-linking density, although the bending strength was slightly varied. In the region of low cross-linking densities, the normalized fracture toughness was constant and the normalized bending strength was drastically varied; however, adding nanosilica particles had negative effects on both properties.

The results can be summarized as follows: The improved effects of fracture toughness and bending strength cannot be explained on the basis of reduced stress concentration near the particles or simple mixing of particles and matrix resins because the normalized fracture toughness and bending strength of composites with different cross-linking densities were not constant under fixed volume fractions of particles in Figs. 5 and 6. The cross-linking densities in the matrix resins greatly contributed to fracture toughness due to stronger interaction between the matrix resins and nanosilica particles due to slightly incomplete network structures in the matrix resins. This is because cracks in the fracture tests propagated in the matrix resins, as observed in Fig. 2. In contrast, the interactive effect between the particles and network structures in the matrix resins on the bending strength of composites was relatively small and the strength of the matrix resins mainly affected the strength of the composites because the fractures in bending tests propagated in the matrix resins [17]. Therefore, the interaction between the particles and matrix resins played an important role in the fracture toughness of the composites. The fracture toughness of the composite was predicted to be controlled by the particles size because the interactive effect changed.
0/5000
Dari: -
Ke: -
Hasil (Bahasa Indonesia) 1: [Salinan]
Disalin!
Gambar 7 plot hubungan antara menormalkan fraktur ketangguhan dan kekuatan membungkuk komposit untuk memperjelas kepekaan properti untuk kepadatan cross-linking. Di wilayah cross-linking kepekatan tinggi, ketangguhan menormalkan fraktur adalah sangat sensitif terhadap kepadatan cross-linking, meskipun kekuatan membungkuk sedikit pun bervariasi. Di daerah rendah kepadatan cross-linking, ketangguhan menormalkan fraktur adalah konstan dan kekuatan membungkuk menormalkan drastis bervariasi; Namun, menambahkan partikel nanosilica memiliki efek negatif pada kedua properti.The results can be summarized as follows: The improved effects of fracture toughness and bending strength cannot be explained on the basis of reduced stress concentration near the particles or simple mixing of particles and matrix resins because the normalized fracture toughness and bending strength of composites with different cross-linking densities were not constant under fixed volume fractions of particles in Figs. 5 and 6. The cross-linking densities in the matrix resins greatly contributed to fracture toughness due to stronger interaction between the matrix resins and nanosilica particles due to slightly incomplete network structures in the matrix resins. This is because cracks in the fracture tests propagated in the matrix resins, as observed in Fig. 2. In contrast, the interactive effect between the particles and network structures in the matrix resins on the bending strength of composites was relatively small and the strength of the matrix resins mainly affected the strength of the composites because the fractures in bending tests propagated in the matrix resins [17]. Therefore, the interaction between the particles and matrix resins played an important role in the fracture toughness of the composites. The fracture toughness of the composite was predicted to be controlled by the particles size because the interactive effect changed.
Sedang diterjemahkan, harap tunggu..
Hasil (Bahasa Indonesia) 2:[Salinan]
Disalin!
Gambar 7 plot hubungan antara ketangguhan patah dinormalisasi dan kekuatan lentur komposit untuk memperjelas sensitivitas properti untuk kepadatan silang. Di wilayah kepadatan silang tinggi, ketangguhan patah dinormalisasi sangat sensitif terhadap kepadatan cross-linking, meskipun kekuatan lentur sedikit bervariasi. Di wilayah kepadatan silang rendah, ketangguhan patah dinormalisasi adalah konstan dan kekuatan lentur yang dinormalisasi adalah drastis bervariasi; Namun, menambahkan partikel nanosilica memiliki efek negatif pada kedua sifat.

Hasilnya dapat diringkas sebagai berikut: efek ditingkatkan dari ketangguhan retak dan kekuatan lentur tidak dapat dijelaskan atas dasar konsentrasi tegangan berkurang dekat partikel atau pencampuran sederhana partikel dan resin matrix karena ketangguhan patah dinormalisasi dan kekuatan lentur komposit dengan kepadatan silang yang berbeda tidak konstan di bawah fraksi volume tetap partikel dalam Gambar. 5 dan 6. kepadatan silang di resin matriks banyak menyumbang patah ketangguhan karena interaksi kuat antara resin matriks dan partikel nanosilica struktur jaringan karena sedikit tidak lengkap dalam resin matriks. Hal ini karena celah-celah di tes fraktur disebarkan di resin matriks, seperti yang diamati pada Gambar. 2. Sebaliknya, efek interaktif antara partikel dan struktur jaringan di resin matriks pada kekuatan lentur komposit relatif kecil dan kekuatan dari resin matriks terutama mempengaruhi kekuatan komposit karena patah tulang di tes lentur disebarkan di matriks resin [17]. Oleh karena itu, interaksi antara partikel dan resin matrix memainkan peran penting dalam ketangguhan retak komposit. Ketangguhan retak komposit diperkirakan dikendalikan oleh ukuran partikel karena efek interaktif berubah.
Sedang diterjemahkan, harap tunggu..
 
Bahasa lainnya
Dukungan alat penerjemahan: Afrikans, Albania, Amhara, Arab, Armenia, Azerbaijan, Bahasa Indonesia, Basque, Belanda, Belarussia, Bengali, Bosnia, Bulgaria, Burma, Cebuano, Ceko, Chichewa, China, Cina Tradisional, Denmark, Deteksi bahasa, Esperanto, Estonia, Farsi, Finlandia, Frisia, Gaelig, Gaelik Skotlandia, Galisia, Georgia, Gujarati, Hausa, Hawaii, Hindi, Hmong, Ibrani, Igbo, Inggris, Islan, Italia, Jawa, Jepang, Jerman, Kannada, Katala, Kazak, Khmer, Kinyarwanda, Kirghiz, Klingon, Korea, Korsika, Kreol Haiti, Kroat, Kurdi, Laos, Latin, Latvia, Lituania, Luksemburg, Magyar, Makedonia, Malagasi, Malayalam, Malta, Maori, Marathi, Melayu, Mongol, Nepal, Norsk, Odia (Oriya), Pashto, Polandia, Portugis, Prancis, Punjabi, Rumania, Rusia, Samoa, Serb, Sesotho, Shona, Sindhi, Sinhala, Slovakia, Slovenia, Somali, Spanyol, Sunda, Swahili, Swensk, Tagalog, Tajik, Tamil, Tatar, Telugu, Thai, Turki, Turkmen, Ukraina, Urdu, Uyghur, Uzbek, Vietnam, Wales, Xhosa, Yiddi, Yoruba, Yunani, Zulu, Bahasa terjemahan.

Copyright ©2024 I Love Translation. All reserved.

E-mail: