DiscussionIn a recent article comparing various personality inventorie terjemahan - DiscussionIn a recent article comparing various personality inventorie Bahasa Indonesia Bagaimana mengatakan

DiscussionIn a recent article compa

Discussion
In a recent article comparing
various personality inventories,
Grucza and Goldberg (2007) made
the seemingly provocative statement
that “Among the competing products
developed by psychologists, perhaps
the most important are their assessment
instruments. Unfortunately, in
psychology we have no Consumers
Union to test competing claims and to
compare these products on their overall
effectiveness.” (p. 167). I agree with
this assessment and think it is important
that we as a field continue to develop
and evaluate freely available methods
for assessing the constructs we seek to
measure.
The purpose of the current
manuscript was to apply recent advances
in psychometric assessment to evaluate
the measurement properties of a short-
form personality inventory based on the
IPIP format for use in the New Zealand
context. This short-form measure, the
Mini-IPIP6, is publicly available, and
a copy is included in the appendix. The
Mini-IPIP6 is based on the original
Five-Factor Mini-IPIP developed by
Donnellan et al. (2006), who in turn
selected items from the IPIP developed
by Goldberg (1999). The Mini-IPIP6
builds upon this earlier work by also
including items that load on the distinct
sixth ‘Honesty-Humility’ factor not
indexed in earlier Five-Factor models.
This is the second in a series of papers
documenting the various properties
and characteristics of the Mini-IPIP6
within the New Zealand population
(see Sibley et al., 2011, for the first). In
these papers, I hope to provide detailed
and transparent information about the
scale, its strengths, and its weaknesses,
for the assessment of personality in the
New Zealand context.
R e s u l t s f r o m a s e r i e s o f
unidimensional graded response
models indicated that the Mini-IPIP6
provides reasonably well distributed
estimates of each of the six dimensions
of personality across each latent trait
range. Moreover, the Mini-IPIP6 scales
were most precise when measuring
levels of each personality trait that were
close to the population average. This
is entirely as expected, given that the
scales were designed to assess variation
in the typical trait range, rather than,
in contrast, variation at the extremes
of a trait range as might be the case
for a measure of depression or clinical
anxiety (see for example Krynen et al.,
2012).
Recommendations for scale
scoring
The Mini-IPIP6 can be scored
using either a classical measurement
model (by taking the average of scale
items or estimating a latent variable
in a structural equation model), or a
more advanced IRT scoring method
based on the parameters reported here.
For the most part, the two scoring
methods should generally yield similar
results. For the majority of research on
personality, Mini-IPIP6 scale scores can
be calculated simply by first recoding
the scale items worded in the opposing
(low trait direction), and then taking
the average score for the items in that
subscale (i.e., summing the scores for
the items in a given subscale, and then
dividing that number by how many
items there are in the subscale). This
provides mean subscale scores, the
method employed by Sibley et al. (2011)
in their earlier work using the Mini-
IPIP6. This scoring method should be
appropriate for the majority of research
focusing on assessing the extent to
which different aspects of personality
are linked to other outcomes of interest.
The difficulty and discrimination
parameters reported in this paper could
also be employed to score the Mini-IPIP6
using a more advanced IRT method. An
IRT-weighted scoring procedure will
be more reliable than simply creating a
mean scale score as it is weighted based
on item discrimination parameters and
thus provides more reliable estimates
for a given person depending upon
their level of given personality trait.

0/5000
Dari: -
Ke: -
Hasil (Bahasa Indonesia) 1: [Salinan]
Disalin!
DiscussionIn a recent article comparing various personality inventories, Grucza and Goldberg (2007) made the seemingly provocative statement that “Among the competing products developed by psychologists, perhaps the most important are their assessment instruments. Unfortunately, in psychology we have no Consumers Union to test competing claims and to compare these products on their overall effectiveness.” (p. 167). I agree with this assessment and think it is important that we as a field continue to develop and evaluate freely available methods for assessing the constructs we seek to measure. The purpose of the current manuscript was to apply recent advances in psychometric assessment to evaluate the measurement properties of a short-form personality inventory based on the IPIP format for use in the New Zealand context. This short-form measure, the Mini-IPIP6, is publicly available, and a copy is included in the appendix. The Mini-IPIP6 is based on the original Five-Factor Mini-IPIP developed by Donnellan et al. (2006), who in turn selected items from the IPIP developed by Goldberg (1999). The Mini-IPIP6 builds upon this earlier work by also including items that load on the distinct sixth ‘Honesty-Humility’ factor not indexed in earlier Five-Factor models. This is the second in a series of papers documenting the various properties and characteristics of the Mini-IPIP6 within the New Zealand population (see Sibley et al., 2011, for the first). In these papers, I hope to provide detailed and transparent information about the scale, its strengths, and its weaknesses, for the assessment of personality in the New Zealand context. R e s u l t s f r o m a s e r i e s o f unidimensional graded response models indicated that the Mini-IPIP6 provides reasonably well distributed estimates of each of the six dimensions of personality across each latent trait range. Moreover, the Mini-IPIP6 scales were most precise when measuring levels of each personality trait that were close to the population average. This is entirely as expected, given that the scales were designed to assess variation in the typical trait range, rather than, in contrast, variation at the extremes of a trait range as might be the case for a measure of depression or clinical anxiety (see for example Krynen et al., 2012). Recommendations for scale scoringThe Mini-IPIP6 can be scored using either a classical measurement model (by taking the average of scale items or estimating a latent variable in a structural equation model), or a more advanced IRT scoring method based on the parameters reported here. For the most part, the two scoring methods should generally yield similar results. For the majority of research on personality, Mini-IPIP6 scale scores can be calculated simply by first recoding the scale items worded in the opposing (low trait direction), and then taking the average score for the items in that subscale (i.e., summing the scores for the items in a given subscale, and then dividing that number by how many items there are in the subscale). This provides mean subscale scores, the method employed by Sibley et al. (2011) in their earlier work using the Mini-IPIP6. This scoring method should be appropriate for the majority of research focusing on assessing the extent to which different aspects of personality are linked to other outcomes of interest. The difficulty and discrimination parameters reported in this paper could also be employed to score the Mini-IPIP6 using a more advanced IRT method. An IRT-weighted scoring procedure will be more reliable than simply creating a mean scale score as it is weighted based on item discrimination parameters and thus provides more reliable estimates for a given person depending upon their level of given personality trait.
Sedang diterjemahkan, harap tunggu..
Hasil (Bahasa Indonesia) 2:[Salinan]
Disalin!
Diskusi
Dalam sebuah artikel terbaru yang membandingkan
berbagai persediaan kepribadian,
Grucza dan Goldberg (2007) membuat
pernyataan yang tampaknya provokatif
bahwa "Diantara produk yang bersaing
dikembangkan oleh psikolog, mungkin
yang paling penting adalah penilaian mereka
instrumen. Sayangnya, di
psikologi kita tidak memiliki Konsumen
Union untuk menguji klaim bersaing dan untuk
membandingkan produk ini pada mereka secara keseluruhan
efektivitas. "(Hal. 167). Saya setuju dengan
penilaian ini dan berpikir itu penting
bahwa kita sebagai lapangan terus mengembangkan
dan mengevaluasi metode yang tersedia secara bebas
untuk menilai konstruksi kita berusaha untuk
mengukur.
Tujuan dari saat
naskah itu untuk menerapkan kemajuan terbaru
dalam penilaian psikometrik untuk mengevaluasi
pengukuran Sifat dari pendek
persediaan bentuk kepribadian berdasarkan
format yang IPIP untuk digunakan dalam Selandia Baru
konteks. Ini mengukur bentuk singkat, yang
Mini-IPIP6, tersedia untuk publik, dan
salinan disertakan dalam lampiran. The
Mini-IPIP6 didasarkan pada asli
Five-Factor Mini-IPIP dikembangkan oleh
Donnellan dkk. (2006), yang pada gilirannya
item dari IPIP dikembangkan dipilih
oleh Goldberg (1999). Mini-IPIP6
dibangun berdasarkan karya sebelumnya dengan juga
termasuk item yang memuat pada berbeda
keenam 'Kejujuran-Kerendahan hati' faktor tidak
terindeks di awal model Lima-Factor.
Ini adalah yang kedua dalam serangkaian makalah
mendokumentasikan berbagai sifat
dan karakteristik Mini-IPIP6
dalam populasi Selandia Baru
(lihat Sibley et al., 2011, untuk pertama). Dalam
makalah ini, saya berharap untuk memberikan rinci
informasi dan transparan tentang
skala, kekuatan, dan kelemahan,
untuk penilaian kepribadian dalam
konteks Selandia Baru.
R esultsfromaseriesof
respon dinilai unidimensional
model menunjukkan bahwa Mini-IPIP6
menyediakan didistribusikan cukup baik
perkiraan masing-masing dari enam dimensi
kepribadian di masing-masing sifat laten
jangkauan. Selain itu, timbangan Mini-IPIP6
yang paling tepat ketika mengukur
tingkat masing-masing ciri kepribadian yang
dekat dengan rata-rata populasi. Ini
sepenuhnya seperti yang diharapkan, mengingat bahwa
skala yang dirancang untuk menilai variasi
dalam kisaran sifat yang khas, bukan,
sebaliknya, variasi pada ekstrem
dari berbagai sifat sebagai mungkin menjadi kasus
untuk ukuran depresi atau klinis
kecemasan (lihat misalnya Krynen et al.,
2012).
Rekomendasi untuk skala
mencetak
Mini-IPIP6 dapat mencetak
baik menggunakan pengukuran klasik
Model (dengan mengambil rata-rata skala
item atau mengestimasi variabel laten
dalam model persamaan struktural), atau
lebih Metode canggih IRT scoring
berdasarkan parameter dilaporkan di sini.
Untuk sebagian besar, dua gol
metode harus umumnya menghasilkan sejenis
hasil. Bagi sebagian besar penelitian tentang
kepribadian, skor skala Mini-IPIP6 dapat
dihitung hanya dengan pertama pengodean ulang
item skala worded dalam menentang
(arah sifat rendah), dan kemudian mengambil
nilai rata-rata untuk item dalam
subskala (yaitu, menjumlahkan skor untuk
item dalam subskala diberikan, dan kemudian
membagi jumlah tersebut dengan berapa banyak
item ada dalam subskala yang). Ini
memberikan skor subskala berarti, yang
metode yang digunakan oleh Sibley dkk. (2011)
dalam pekerjaan mereka sebelumnya menggunakan Mini
IPIP6. Metode skoring ini harus
sesuai untuk sebagian besar penelitian
berfokus pada menilai sejauh
mana aspek yang berbeda dari kepribadian
terkait dengan hasil lain yang menarik.
Kesulitan dan diskriminasi
parameter dilaporkan dalam makalah ini bisa
juga digunakan untuk mencetak Mini-IPIP6
menggunakan metode IRT yang lebih maju. Sebuah
prosedur scoring IRT-tertimbang akan
lebih dapat diandalkan dibandingkan hanya menciptakan
nilai skala berarti seperti yang tertimbang berdasarkan
pada parameter diskriminasi barang dan
dengan demikian memberikan perkiraan yang lebih handal
untuk orang yang diberikan tergantung pada
tingkat mereka diberikan sifat kepribadian.

Sedang diterjemahkan, harap tunggu..
 
Bahasa lainnya
Dukungan alat penerjemahan: Afrikans, Albania, Amhara, Arab, Armenia, Azerbaijan, Bahasa Indonesia, Basque, Belanda, Belarussia, Bengali, Bosnia, Bulgaria, Burma, Cebuano, Ceko, Chichewa, China, Cina Tradisional, Denmark, Deteksi bahasa, Esperanto, Estonia, Farsi, Finlandia, Frisia, Gaelig, Gaelik Skotlandia, Galisia, Georgia, Gujarati, Hausa, Hawaii, Hindi, Hmong, Ibrani, Igbo, Inggris, Islan, Italia, Jawa, Jepang, Jerman, Kannada, Katala, Kazak, Khmer, Kinyarwanda, Kirghiz, Klingon, Korea, Korsika, Kreol Haiti, Kroat, Kurdi, Laos, Latin, Latvia, Lituania, Luksemburg, Magyar, Makedonia, Malagasi, Malayalam, Malta, Maori, Marathi, Melayu, Mongol, Nepal, Norsk, Odia (Oriya), Pashto, Polandia, Portugis, Prancis, Punjabi, Rumania, Rusia, Samoa, Serb, Sesotho, Shona, Sindhi, Sinhala, Slovakia, Slovenia, Somali, Spanyol, Sunda, Swahili, Swensk, Tagalog, Tajik, Tamil, Tatar, Telugu, Thai, Turki, Turkmen, Ukraina, Urdu, Uyghur, Uzbek, Vietnam, Wales, Xhosa, Yiddi, Yoruba, Yunani, Zulu, Bahasa terjemahan.

Copyright ©2025 I Love Translation. All reserved.

E-mail: