compounds such as nitroarenes [25,26], aryl chlorides [27,28],aldehyde terjemahan - compounds such as nitroarenes [25,26], aryl chlorides [27,28],aldehyde Bahasa Indonesia Bagaimana mengatakan

compounds such as nitroarenes [25,2

compounds such as nitroarenes [25,26], aryl chlorides [27,28],
aldehydes [29], biomass-derived glycolides [30], bio-oil [31], and
carbon dioxide [32,33]. To regenerate oxidized metals and metal
oxides, the following processes have been proposed as renewable
energy sources: reducing gases from biomass gasification [34],
biomass-derived char [35,36], and solar thermal energy [31,37].
Thus, metal/metal-oxide water systems used as in situ hydrogen
donors can potentially be used for eco-friendly chemical synthesis
via hydrogenation and hydrogenolysis reactions. The zerovalent
iron (Fe) and water (H2O) system is particularly valuable in this
regard, because Fe is an abundant and cheap resource that can be
used to produce H2 in accordance with Reactions (1) and (2):
Fe (s) + H2O (g) → FeO (s) + H2 (g) (1)
3FeO (s) + H2O (g) → Fe3O4 (s) + H2 (g) (2)
Here, (s) and (g) represent solids and gases, respectively. The use
of H2 derived from nanoscale Fe and H2O has been investigated for
removing contaminants such as p-nitrophenol [38], trichloroethylene
[39], hexachlorobenzene [40], and 4-chlorophenol [41] from
water via catalytic hydrogenation; however, it has not yet been
applied to the production of useful chemicals.
Fatty alcohols derived from renewable resources such as vegetable
oils are an industrially important feedstock for the synthesis
of surfactants and plasticizers. Fatty alcohols are produced by the
hydrogenation of fatty acid esters, which are obtained by transesterification
of triglycerides using methanol or fatty acids from
the hydrolysis of fats [42]. During the hydrogenation of fatty acids
and esters, copper–chromite-based catalysts are commonly used
at high temperatures (250–300 ◦C) and pressures (20–30 MPa). To
date, a large number of heterogeneous catalysts have been investigated
based on noble metals (Ru [43–47], Rh [48], and Pt [49]) or
transition metals (Cu [9,50] and Co [51–53]), and have been shown
to exhibit high activity under mild conditions.
In this work, we employed Fe and H2O (Fe/H2O) as an in situ
hydrogen donor for the transformation of methyl laurate into
lauryl alcohol over a Ru–Sn–Mo/C catalyst. The performance of
Ru–Sn–Mo/C with this Fe/H2O system was compared to a conventional
reaction system that uses pressurized hydrogen.
2. Experimental
2.1. Catalyst preparation
The Ru–Sn–Mo/C catalyst was prepared by a conventional
impregnation method using aqueous solutions of RuCl3·nH2O
(41.1%, Ru content, Wako Pure Chemical Industries, Ltd.),
SnCl4·5H2O (100.1%, Wako Pure Chemical Industries, Ltd.), and
(NH4)6Mo7O24·4H2O (100.7%,Wako Pure Chemical Industries, Ltd.)
with activated charcoal (Sigma-Aldrich, Norit SX Ultra). Typically,
316 mg of RuCl3·nH2O, 222 mg of SnCl4·5H2O, and 23 mg of
(NH4)6Mo7O24·4H2O were placed into an evaporating dish, and 2 g
of ultrapure water was added to dissolve the salts. After adding
857 mg of activated charcoal, the mixture was dried in a water
bath at 90 ◦C while stirring. The resulting impregnated catalyst
was vacuum-dried overnight at 70 ◦C and the resulting catalyst was
reduced at 350 ◦C for 1 h under hydrogen (99.999%) at a flow rate
of 50 cm3 min−1.
Oxidized-Fe sample was prepared from 60 to 80 nm Fe particles
(99.9%, 1564 mg, product number: NM-0029-UP, Ionic Liquids
Technologies), H2O (1 g), and tetradecane (99.7%, 40 mL,Wako Pure
Chemical Industries, Ltd.) in a 100 mL Hastelloy C high-pressure
reactor (OM Lab-Tech, MMJ-100). For this, the reactor was first
purged four times with nitrogen, and then heated to 270 ◦C and
held atthis temperature for 24 h at a stirring rate of 1000 rpm. After
cooling to room temperature, the oxidized iron was separated by
filtration, washed with acetone, and then vacuum-dried overnight
at 70 ◦C.
2.2. Characterization
To determine the crystalline phase of the catalyst, X-ray powder
diffraction (XRD) analyses were performed using a Rigaku SmartLab
diffractometer with CuK radiation. X-ray fluorescence (XRF)
analyses were also performed to determine composition of the
fresh and spent catalyst using a Rigaku ZSX Primus II apparatus
with RhK radiation. A Brunauer–Emmett–Teller (BET) analysis
was conducted to determine the specific surface area of the catalyst;
this was accomplished by using N2 adsorption at −196 ◦C
with a BEL Japan Bellsorp-mini II instrument. The surface chemical
states of the Ru–Sn–Mo/C were evaluated by X-ray photoelectron
spectroscopy (XPS) analyses (JPS-9000MX, JEOL) with a MgK excitation
source. All binding energy values in the XPS spectra were
referenced to the C 1 s line at 285.0 eV.
Temperature programmed desorption (NH3-TPD and CO2-TPD)
experiments were carried out in a flow apparatus with helium
as the carrier gas using a MicrotracBEL BELCAT-A. Prior to these
experiments, the samples (0.2 g) were pretreated for 1 h at 300 ◦C
under He (30 cm3 min−1) to remove the adsorbate. Once the samples
were cooled to 100 ◦C, probe mo
0/5000
Dari: -
Ke: -
Hasil (Bahasa Indonesia) 1: [Salinan]
Disalin!
compounds such as nitroarenes [25,26], aryl chlorides [27,28],aldehydes [29], biomass-derived glycolides [30], bio-oil [31], andcarbon dioxide [32,33]. To regenerate oxidized metals and metaloxides, the following processes have been proposed as renewableenergy sources: reducing gases from biomass gasification [34],biomass-derived char [35,36], and solar thermal energy [31,37].Thus, metal/metal-oxide water systems used as in situ hydrogendonors can potentially be used for eco-friendly chemical synthesisvia hydrogenation and hydrogenolysis reactions. The zerovalentiron (Fe) and water (H2O) system is particularly valuable in thisregard, because Fe is an abundant and cheap resource that can beused to produce H2 in accordance with Reactions (1) and (2):Fe (s) + H2O (g) → FeO (s) + H2 (g) (1)3FeO (s) + H2O (g) → Fe3O4 (s) + H2 (g) (2)Here, (s) and (g) represent solids and gases, respectively. The useof H2 derived from nanoscale Fe and H2O has been investigated forremoving contaminants such as p-nitrophenol [38], trichloroethylene[39], hexachlorobenzene [40], and 4-chlorophenol [41] fromwater via catalytic hydrogenation; however, it has not yet beenapplied to the production of useful chemicals.Fatty alcohols derived from renewable resources such as vegetableoils are an industrially important feedstock for the synthesisof surfactants and plasticizers. Fatty alcohols are produced by thehydrogenation of fatty acid esters, which are obtained by transesterificationof triglycerides using methanol or fatty acids fromthe hydrolysis of fats [42]. During the hydrogenation of fatty acidsand esters, copper–chromite-based catalysts are commonly usedat high temperatures (250–300 ◦C) and pressures (20–30 MPa). Todate, a large number of heterogeneous catalysts have been investigatedbased on noble metals (Ru [43–47], Rh [48], and Pt [49]) ortransition metals (Cu [9,50] and Co [51–53]), and have been shownto exhibit high activity under mild conditions.In this work, we employed Fe and H2O (Fe/H2O) as an in situhydrogen donor for the transformation of methyl laurate intolauryl alcohol over a Ru–Sn–Mo/C catalyst. The performance ofRu–Sn–Mo/C with this Fe/H2O system was compared to a conventionalreaction system that uses pressurized hydrogen.2. Experimental2.1. Catalyst preparationThe Ru–Sn–Mo/C catalyst was prepared by a conventionalimpregnation method using aqueous solutions of RuCl3·nH2O(41.1%, Ru content, Wako Pure Chemical Industries, Ltd.),SnCl4·5H2O (100.1%, Wako Pure Chemical Industries, Ltd.), and(NH4)6Mo7O24·4H2O (100.7%,Wako Pure Chemical Industries, Ltd.)with activated charcoal (Sigma-Aldrich, Norit SX Ultra). Typically,316 mg of RuCl3·nH2O, 222 mg of SnCl4·5H2O, and 23 mg of(NH4)6Mo7O24·4H2O were placed into an evaporating dish, and 2 gof ultrapure water was added to dissolve the salts. After adding857 mg of activated charcoal, the mixture was dried in a waterbath at 90 ◦C while stirring. The resulting impregnated catalystwas vacuum-dried overnight at 70 ◦C and the resulting catalyst wasreduced at 350 ◦C for 1 h under hydrogen (99.999%) at a flow rateof 50 cm3 min−1.Oxidized-Fe sample was prepared from 60 to 80 nm Fe particles(99.9%, 1564 mg, product number: NM-0029-UP, Ionic LiquidsTechnologies), H2O (1 g), and tetradecane (99.7%, 40 mL,Wako PureChemical Industries, Ltd.) in a 100 mL Hastelloy C high-pressurereactor (OM Lab-Tech, MMJ-100). For this, the reactor was firstpurged four times with nitrogen, and then heated to 270 ◦C andheld atthis temperature for 24 h at a stirring rate of 1000 rpm. Aftercooling to room temperature, the oxidized iron was separated byfiltration, washed with acetone, and then vacuum-dried overnightat 70 ◦C.2.2. CharacterizationTo determine the crystalline phase of the catalyst, X-ray powderdiffraction (XRD) analyses were performed using a Rigaku SmartLabdiffractometer with CuK radiation. X-ray fluorescence (XRF)analyses were also performed to determine composition of thefresh and spent catalyst using a Rigaku ZSX Primus II apparatuswith RhK radiation. A Brunauer–Emmett–Teller (BET) analysiswas conducted to determine the specific surface area of the catalyst;this was accomplished by using N2 adsorption at −196 ◦Cwith a BEL Japan Bellsorp-mini II instrument. The surface chemicalstates of the Ru–Sn–Mo/C were evaluated by X-ray photoelectronspectroscopy (XPS) analyses (JPS-9000MX, JEOL) with a MgK excitationsource. All binding energy values in the XPS spectra werereferenced to the C 1 s line at 285.0 eV.Temperature programmed desorption (NH3-TPD and CO2-TPD)experiments were carried out in a flow apparatus with heliumas the carrier gas using a MicrotracBEL BELCAT-A. Prior to theseexperiments, the samples (0.2 g) were pretreated for 1 h at 300 ◦Cunder He (30 cm3 min−1) to remove the adsorbate. Once the sampleswere cooled to 100 ◦C, probe mo
Sedang diterjemahkan, harap tunggu..
Hasil (Bahasa Indonesia) 2:[Salinan]
Disalin!
senyawa seperti nitroarenes [25,26], aril klorida [27,28],
aldehida [29], yang diturunkan dari biomassa glycolides [30], bio-oil [31], dan
karbon dioksida [32,33]. Untuk menumbuhkan logam dan logam teroksidasi
oksida, proses berikut telah diusulkan sebagai terbarukan
sumber energi: gas mengurangi dari gasifikasi biomassa [34],
. Biomassa yang diturunkan arang [35,36], dan energi panas matahari [31,37]
Dengan demikian, sistem air / logam-oksida logam yang digunakan seperti pada hidrogen in situ
donor potensial dapat digunakan untuk sintesis kimia ramah lingkungan
melalui hidrogenasi dan reaksi hidrogenolisis. The bervalensi-nol
besi (Fe) dan sistem air (H2O) sangat berharga dalam
hal, karena Fe merupakan sumber daya yang melimpah dan murah yang dapat
digunakan untuk memproduksi H2 sesuai dengan Reaksi (1) dan (2):
Fe (s) + H2O (g) → FeO (s) + H2 (g) (1)
3FeO (s) + H2O (g) → Fe3O4 (s) + H2 (g) (2)
Di sini, (s) dan (g) merupakan padat dan gas, masing-masing. Penggunaan
dari H2 berasal dari nano Fe dan H2O telah diteliti untuk
menghilangkan kontaminan seperti p-nitrofenol [38], trichloroethylene
[39], hexachlorobenzene [40], dan 4-klorofenol [41] dari
air melalui hidrogenasi katalitik; Namun, itu belum
diterapkan pada produksi bahan kimia yang berguna.
alkohol Fatty berasal dari sumber daya terbarukan seperti sayur
minyak merupakan bahan baku industri yang penting untuk sintesis
surfaktan dan plasticizer. Alkohol lemak yang diproduksi oleh
hidrogenasi ester asam lemak, yang diperoleh dengan transesterifikasi
trigliserida dengan metanol atau asam lemak dari
hidrolisis lemak [42]. Selama hidrogenasi asam lemak
dan ester, katalis berbasis tembaga kromit yang umum digunakan
pada suhu tinggi (250-300 ◦C) dan tekanan (20-30 MPa). Untuk
saat ini, sejumlah besar katalis heterogen telah diselidiki
berdasarkan pada logam mulia (Ru [43-47], Rh [48], dan Pt [49]) atau
logam transisi (Cu [9,50] dan Co [51- 53]), dan telah terbukti
menunjukkan aktivitas tinggi di bawah kondisi yang ringan.
dalam karya ini, kami bekerja Fe dan H2O (Fe / H2O) sebagai in situ
hidrogen donor untuk transformasi metil laurat menjadi
lauril alkohol selama Ru-Sn -Mo / C katalis. Kinerja
Ru-Sn-Mo / C dengan Fe sistem ini / H2O dibandingkan dengan konvensional
sistem reaksi yang menggunakan hidrogen bertekanan.
2. Eksperimental
2.1. Pembuatan katalis
The Ru-Sn-Mo / C katalis dibuat oleh konvensional
metode impregnasi menggunakan larutan air dari RuCl3 · nH2O
(41,1%, konten Ru, Wako Pure Chemical Industries, Ltd),
SnCl4 · 5H2O (100,1%, Wako Pure chemical Industries, Ltd), dan
(NH4) 6Mo7O24 · 4H2O (100,7%, Wako Pure chemical Industries, Ltd)
dengan arang aktif (Sigma-Aldrich, Norit SX Ultra). Biasanya,
316 mg RuCl3 · nH2O, 222 mg SnCl4 · 5H2O, dan 23 mg
(NH4) 6Mo7O24 · 4H2O ditempatkan ke dalam piring menguap, dan 2 g
air ultra murni ditambahkan untuk melarutkan garam. Setelah menambahkan
857 mg arang aktif, campuran tersebut dikeringkan dalam air
mandi pada 90 ◦C sambil diaduk. Dihasilkan katalis diresapi
adalah vakum-kering semalam di 70 ◦C dan katalis yang dihasilkan
berkurang pada 350 ◦C selama 1 jam di bawah hidrogen (99,999%) pada laju alir
50 cm3 min-1.
Teroksidasi-Fe sampel disiapkan dari 60 sampai 80 nm Fe partikel
(99,9%, 1564 mg, jumlah produk: NM-0029-UP, Cairan Ionik
Technologies), H2O (1 g), dan tetradecane (99,7%, 40 mL, Wako Pure
Chemical Industries, Ltd) dalam tekanan tinggi 100 mL Hastelloy C
reaktor (OM Lab-Tech, MMJ-100). Untuk ini, reaktor pertama kali
dibersihkan empat kali dengan nitrogen, dan kemudian dipanaskan sampai 270 ◦C dan
diadakan atthis suhu selama 24 jam pada tingkat pengadukan 1000 rpm. Setelah
pendinginan sampai suhu kamar, besi teroksidasi dipisahkan oleh
filtrasi, dicuci dengan aseton, dan kemudian vakum-kering semalam
pada 70 ° C.
2.2. Karakterisasi
Untuk menentukan fase kristal katalis, X-ray powder
difraksi (XRD) analisis yang dilakukan menggunakan Rigaku SmartLab
difraktometer dengan radiasi Cuk. X-ray fluorescence (XRF)
analisis juga dilakukan untuk menentukan komposisi
katalis segar dan menghabiskan menggunakan alat Rigaku ZSX Primus II
dengan radiasi RHK. Sebuah analisis Brunauer-Emmett-Teller (BET)
dilakukan untuk menentukan luas permukaan spesifik katalis;
ini dilakukan dengan menggunakan N2 adsorpsi pada -196 ◦C
dengan BEL Jepang instrumen Bellsorp mini II. Kimia permukaan
negara bagian Ru-Sn-Mo / C dievaluasi oleh X-ray fotoelektron
spektroskopi (XPS) analisis (JPS-9000MX, JEOL) dengan eksitasi MGK
sumber. Semua nilai-nilai energi yang mengikat dalam XPS spektrum yang
direferensikan ke C 1 s line di 285,0 eV.
Suhu diprogram desorpsi (NH3-TPD dan CO2-TPD)
Percobaan dilakukan dalam alat aliran dengan helium
sebagai gas pembawa menggunakan MicrotracBEL BELCAT -SEBUAH. Sebelum ini
percobaan, sampel (0,2 g) diobati sebelumnya selama 1 jam pada 300 ◦C
bawah Dia (30 cm3 menit-1) untuk menghapus adsorbat. Setelah sampel
didinginkan sampai 100 ◦C, menyelidiki mo
Sedang diterjemahkan, harap tunggu..
 
Bahasa lainnya
Dukungan alat penerjemahan: Afrikans, Albania, Amhara, Arab, Armenia, Azerbaijan, Bahasa Indonesia, Basque, Belanda, Belarussia, Bengali, Bosnia, Bulgaria, Burma, Cebuano, Ceko, Chichewa, China, Cina Tradisional, Denmark, Deteksi bahasa, Esperanto, Estonia, Farsi, Finlandia, Frisia, Gaelig, Gaelik Skotlandia, Galisia, Georgia, Gujarati, Hausa, Hawaii, Hindi, Hmong, Ibrani, Igbo, Inggris, Islan, Italia, Jawa, Jepang, Jerman, Kannada, Katala, Kazak, Khmer, Kinyarwanda, Kirghiz, Klingon, Korea, Korsika, Kreol Haiti, Kroat, Kurdi, Laos, Latin, Latvia, Lituania, Luksemburg, Magyar, Makedonia, Malagasi, Malayalam, Malta, Maori, Marathi, Melayu, Mongol, Nepal, Norsk, Odia (Oriya), Pashto, Polandia, Portugis, Prancis, Punjabi, Rumania, Rusia, Samoa, Serb, Sesotho, Shona, Sindhi, Sinhala, Slovakia, Slovenia, Somali, Spanyol, Sunda, Swahili, Swensk, Tagalog, Tajik, Tamil, Tatar, Telugu, Thai, Turki, Turkmen, Ukraina, Urdu, Uyghur, Uzbek, Vietnam, Wales, Xhosa, Yiddi, Yoruba, Yunani, Zulu, Bahasa terjemahan.

Copyright ©2025 I Love Translation. All reserved.

E-mail: