Note-taking. The empirical evidence does not always support the value  terjemahan - Note-taking. The empirical evidence does not always support the value  Bahasa Indonesia Bagaimana mengatakan

Note-taking. The empirical evidence

Note-taking. The empirical evidence does not always support the value of note-taking during lectures (see Hartley & Davies, 1977). In thirty-four experiments, the results of sixteen have been statistically non significant. But in correlational studies, where note-taking has been measured as it occurs naturally (rather than being imposed, as in experiments) the “results-reported over a period of fifty years-have been remarkably consistent, and they show that taking notes leads to enhanced performance in subsequent test”(p.4). subsequent analyses by Berliner (1971) revealed that note-taking may be effective only when a student’s short-term memory is relatively high. Students who are low on measures of short-term memory is relatively high. Students who are low on measures of short-term memory seem to profit more from lecture instruction if they pay attention than if they take notes. Lecturers often seem to prefer that all students take notes, perhaps because it is reinforcing for lecturers to know that students are in some way valuing what they say. Moore (1968) experimented with giving cues to students with a red or green card. Green meant “take notes”, and red meant “don’t take notes”. Compared with a control group, the cued students did better on an achievement test and evaluated the six-week course and the instructor more favorably.
Handouts. Such handout as outlines showing the organization of a lecture can improve student achievement as shown by Hartley (1976). Further, the handout was more efficient, in the sense of improving achievement without requiring additional note-taking effort, when the handout was “full” rather than “spaced” with illustrative detail omitted. The latter kind of handout stimulated more note-taking but did not improve achievement over that of the students given the full handout. When the handout was “in complete”, in that it omitted twenty key words or phrases whose absence was indicated by a line, it did produce better achievement than either a complete handout or no handout.

Being Clear
Almost everyone would agree that a lecture should be clear. It is not enough, of course, to tell lecturers to be clear. They need help in converting the abstract advice into concrete (low-inference) behaviours (Owens, 1974). To meet this need, research workers have offered research-based suggestions as follows:
Examples. In one experiment (Evans & Guyman, 1978), a normal, regular course lecture was rewritten and redelivered to an equivalent set of students with “two examples to illustrate each major concept” (p.5) and without change in sequencing. The students learned more and rated the revised lecture (with examples) more favourably.
Avoiding Vagueness Terms. Some words leave the listener with a feeling that the speaker is unsure of the subject. These words avoid precision in favour of approximation, definiteness in favour of ambiguity. Examples are words such as almost, generally, and many. Several studies have shown that greater vagueness, measured by the frequency of such words, is associated with lower student achievement on tests measuring understanding of what the teacher has presented. For example, Smith and Cotten (1980) audiotaped 12-to 14 minute mathematics lessons. One pair of lessons contained 120 vagueness terms, and the other pair contained none. Here is what a no-vagueness paragraph looked like:
The first theorem involves two chords intersecting at one point in a circle. Look at figure 1. AB intersect CD at point E. The length of line segment AE is 4 units. The length of line segment EB is 3 units. The length of line segment ED is 6 units. The length of line segment EC is 2 units. Notice that 4 x 3 = 2 x 6 (p. 672)
The same content, in its high-vagueness version, went like this:
The first theorem sort of involves a couple chords intersecting at one point in a circle. I guess we probably should look at figure 1. AB intersects CD at point E, you see. Look at figure 2. The length of line segment Ae is 4 units. The length of line segment EB is 3 units. The length of line segment ED is 6 units, as you see. The length of line segment EC, you know, is 2 units. You might notice that 4 x 3 = 2 x 6 (p.672)
The list of vagueness terms used in the experiment by Smith and Cotten (1980) includes the following categories and words:
 Ambiguous designation: conditions, somehow, somewhere, thing
 Approximations: about, a little, just about, somewhat, sort of
 “bluffing” and recoveries: actually, and so forth, and so on, anyway, as you know, in a nutshell, in essence, in fact, in other words, of course, or whatever, to make a long story, you know, you see
 Error admissions: excuse me, I’m sorry, I guess
 Indeterminate quantifications: a bunch, a couple, a few, some, various
 Multiplicities: kind(s) of, type(s) of
 Possibilities: chances are, could be, may, maybe, might, perhaps, seems
 Probabilities: generally, in general, often, ordinarily, probably, usually
The students took a 20-item test after hearing the high-vagueness or the no-vagueness leson. Each lesson was accompanied by projected figures showing the geometric content being taught. The students who received the high-vagueness lesson had much lower average scores on the test than the students who received the vagueness-free lesson. Furthermore, the students who heard the latter lesson evaluated the teacher and his presentation more favorably.
This experiment and additional studies stemming from the original work on vagueness by Hiller (1968) have shown convincingly that vagueness depresses student achievement and attitude. The teacher should not only know the subject but also avoid words and phrases that give an impression of vagueness.
THE CONCLUSION OF THE LECTURE
Having finished the body of the lecture, the teacher comes to the conclusion. What should he or she do? Here again a number of functions have been identified by Shutes (1969) on the basis of his analyses of videotape recordings of what some first- time teachers actually did. Let us consider the desirability and the ways in which each of these functions can be performed.
Function of the Conclusion
In bringing your lecture to a close, you can (a) engage in social amenities, (b) ask students to recall ideas or give examples, (c) answer students’ questions (d) specify what students should now through a kind of “ postorganizer”. For example, you can express pleasure at having been able to teach the class and wish the students luck. You can make a final effort to promote comprehension by asking students to recall specific ideas or to provide examples, definitions, and applications. You can provide clarification by supplying additional information in response to students’ question, by rephrasing point already made, by having others students answer a student’s questions, and by applying ideas in the lesson to particular new problems or situations. The teacher can offer specification of what the students should now know, identifying key point, providing emphasis, repeating, or asking question about main points in the lesson.
In his study of teachers’ uses of these functions, Shutes (1969) found that the beginning teachers who were more effective in one-hour session, as estimated from their students’ scores on achievement tests, were especially distinguishable in the degree to which they did the following:
0/5000
Dari: -
Ke: -
Hasil (Bahasa Indonesia) 1: [Salinan]
Disalin!
Note-taking. The empirical evidence does not always support the value of note-taking during lectures (see Hartley & Davies, 1977). In thirty-four experiments, the results of sixteen have been statistically non significant. But in correlational studies, where note-taking has been measured as it occurs naturally (rather than being imposed, as in experiments) the “results-reported over a period of fifty years-have been remarkably consistent, and they show that taking notes leads to enhanced performance in subsequent test”(p.4). subsequent analyses by Berliner (1971) revealed that note-taking may be effective only when a student’s short-term memory is relatively high. Students who are low on measures of short-term memory is relatively high. Students who are low on measures of short-term memory seem to profit more from lecture instruction if they pay attention than if they take notes. Lecturers often seem to prefer that all students take notes, perhaps because it is reinforcing for lecturers to know that students are in some way valuing what they say. Moore (1968) experimented with giving cues to students with a red or green card. Green meant “take notes”, and red meant “don’t take notes”. Compared with a control group, the cued students did better on an achievement test and evaluated the six-week course and the instructor more favorably.Handouts. Such handout as outlines showing the organization of a lecture can improve student achievement as shown by Hartley (1976). Further, the handout was more efficient, in the sense of improving achievement without requiring additional note-taking effort, when the handout was “full” rather than “spaced” with illustrative detail omitted. The latter kind of handout stimulated more note-taking but did not improve achievement over that of the students given the full handout. When the handout was “in complete”, in that it omitted twenty key words or phrases whose absence was indicated by a line, it did produce better achievement than either a complete handout or no handout.Being ClearAlmost everyone would agree that a lecture should be clear. It is not enough, of course, to tell lecturers to be clear. They need help in converting the abstract advice into concrete (low-inference) behaviours (Owens, 1974). To meet this need, research workers have offered research-based suggestions as follows:Examples. In one experiment (Evans & Guyman, 1978), a normal, regular course lecture was rewritten and redelivered to an equivalent set of students with “two examples to illustrate each major concept” (p.5) and without change in sequencing. The students learned more and rated the revised lecture (with examples) more favourably.Avoiding Vagueness Terms. Some words leave the listener with a feeling that the speaker is unsure of the subject. These words avoid precision in favour of approximation, definiteness in favour of ambiguity. Examples are words such as almost, generally, and many. Several studies have shown that greater vagueness, measured by the frequency of such words, is associated with lower student achievement on tests measuring understanding of what the teacher has presented. For example, Smith and Cotten (1980) audiotaped 12-to 14 minute mathematics lessons. One pair of lessons contained 120 vagueness terms, and the other pair contained none. Here is what a no-vagueness paragraph looked like:The first theorem involves two chords intersecting at one point in a circle. Look at figure 1. AB intersect CD at point E. The length of line segment AE is 4 units. The length of line segment EB is 3 units. The length of line segment ED is 6 units. The length of line segment EC is 2 units. Notice that 4 x 3 = 2 x 6 (p. 672)The same content, in its high-vagueness version, went like this:The first theorem sort of involves a couple chords intersecting at one point in a circle. I guess we probably should look at figure 1. AB intersects CD at point E, you see. Look at figure 2. The length of line segment Ae is 4 units. The length of line segment EB is 3 units. The length of line segment ED is 6 units, as you see. The length of line segment EC, you know, is 2 units. You might notice that 4 x 3 = 2 x 6 (p.672)The list of vagueness terms used in the experiment by Smith and Cotten (1980) includes the following categories and words: Ambiguous designation: conditions, somehow, somewhere, thing Approximations: about, a little, just about, somewhat, sort of “bluffing” and recoveries: actually, and so forth, and so on, anyway, as you know, in a nutshell, in essence, in fact, in other words, of course, or whatever, to make a long story, you know, you see Error admissions: excuse me, I’m sorry, I guess Indeterminate quantifications: a bunch, a couple, a few, some, various Multiplicities: kind(s) of, type(s) of Possibilities: chances are, could be, may, maybe, might, perhaps, seems Probabilities: generally, in general, often, ordinarily, probably, usuallyThe students took a 20-item test after hearing the high-vagueness or the no-vagueness leson. Each lesson was accompanied by projected figures showing the geometric content being taught. The students who received the high-vagueness lesson had much lower average scores on the test than the students who received the vagueness-free lesson. Furthermore, the students who heard the latter lesson evaluated the teacher and his presentation more favorably. This experiment and additional studies stemming from the original work on vagueness by Hiller (1968) have shown convincingly that vagueness depresses student achievement and attitude. The teacher should not only know the subject but also avoid words and phrases that give an impression of vagueness.THE CONCLUSION OF THE LECTUREHaving finished the body of the lecture, the teacher comes to the conclusion. What should he or she do? Here again a number of functions have been identified by Shutes (1969) on the basis of his analyses of videotape recordings of what some first- time teachers actually did. Let us consider the desirability and the ways in which each of these functions can be performed.Function of the ConclusionIn bringing your lecture to a close, you can (a) engage in social amenities, (b) ask students to recall ideas or give examples, (c) answer students’ questions (d) specify what students should now through a kind of “ postorganizer”. For example, you can express pleasure at having been able to teach the class and wish the students luck. You can make a final effort to promote comprehension by asking students to recall specific ideas or to provide examples, definitions, and applications. You can provide clarification by supplying additional information in response to students’ question, by rephrasing point already made, by having others students answer a student’s questions, and by applying ideas in the lesson to particular new problems or situations. The teacher can offer specification of what the students should now know, identifying key point, providing emphasis, repeating, or asking question about main points in the lesson. In his study of teachers’ uses of these functions, Shutes (1969) found that the beginning teachers who were more effective in one-hour session, as estimated from their students’ scores on achievement tests, were especially distinguishable in the degree to which they did the following:
Sedang diterjemahkan, harap tunggu..
Hasil (Bahasa Indonesia) 2:[Salinan]
Disalin!
Catatan-taking. Bukti empiris tidak selalu mendukung nilai mencatat selama kuliah (lihat Hartley & Davies, 1977). Dalam tiga puluh empat percobaan, hasil enam belas telah statistik non signifikan. Namun dalam penelitian korelasional, di mana mencatat telah diukur seperti itu terjadi secara alami (bukan yang dikenakan, seperti dalam percobaan) "hasil yang dilaporkan selama periode lima puluh tahun-telah sangat konsisten, dan mereka menunjukkan bahwa mengambil catatan lead untuk meningkatkan kinerja dalam tes berikutnya "(hal.4). analisis selanjutnya oleh Berliner (1971) mengungkapkan bahwa mencatat mungkin efektif hanya jika memori jangka pendek siswa relatif tinggi. Siswa yang rendah untuk ingatan jangka pendek relatif tinggi. Siswa yang rendah untuk ingatan jangka pendek tampaknya lebih banyak keuntungan dari instruksi kuliah jika mereka memperhatikan daripada jika mereka mengambil catatan. Dosen sering tampaknya lebih memilih bahwa semua siswa membuat catatan, mungkin karena memperkuat bagi dosen untuk mengetahui bahwa siswa dalam beberapa cara menghargai apa yang mereka katakan. Moore (1968) bereksperimen dengan memberikan isyarat kepada siswa dengan kartu merah atau hijau. Hijau berarti "mengambil catatan", dan merah berarti "tidak mengambil catatan". Dibandingkan dengan kelompok kontrol, siswa cued melakukan lebih baik pada tes prestasi dan dievaluasi kursus enam minggu dan instruktur yang lebih menguntungkan.
Handout. Handout seperti garis yang menunjukkan organisasi kuliah dapat meningkatkan prestasi belajar siswa seperti yang ditunjukkan oleh Hartley (1976). Selanjutnya, handout lebih efisien, dalam arti meningkatkan prestasi tanpa memerlukan tambahan usaha mencatat, saat handout itu "penuh" daripada "spasi" dengan detail yang ilustratif dihilangkan. Yang terakhir jenis handout dirangsang lebih mencatat tetapi tidak meningkatkan prestasi lebih dari itu siswa diberi handout penuh. Ketika handout itu "secara lengkap", dalam hal ini dihilangkan dua puluh kata kunci atau frase yang tidak adanya ditandai dengan garis, itu menghasilkan prestasi yang lebih baik daripada baik handout lengkap atau tidak ada handout. Menjadi Batal Hampir semua orang akan setuju bahwa kuliah harus jelas. Hal ini tidak cukup, tentu saja, untuk memberitahu dosen harus jelas. Mereka membutuhkan bantuan dalam mengkonversi saran abstrak ke dalam beton (rendah-inferensi) perilaku (Owens, 1974). Untuk memenuhi kebutuhan ini, pekerja riset telah menawarkan saran berbasis penelitian sebagai berikut: Contoh. Dalam satu percobaan (Evans & Guyman, 1978), sebuah, kuliah kursus reguler biasa ditulis ulang dan redelivered untuk set setara siswa dengan "dua contoh untuk menggambarkan setiap konsep utama" (hal.5) dan tanpa perubahan sequencing. Para siswa belajar lebih banyak dan diberi kuliah direvisi (dengan contoh) lebih menguntungkan. Menghindari Ketidakjelasan Ketentuan. Beberapa kata meninggalkan pendengar dengan perasaan bahwa pembicara tidak yakin subjek. Kata-kata ini menghindari presisi mendukung pendekatan, kepastian mendukung ambiguitas. Contohnya adalah kata-kata seperti hampir, umumnya, dan banyak. Beberapa studi telah menunjukkan bahwa ketidakjelasan yang lebih besar, diukur dengan frekuensi kata-kata seperti, terkait dengan prestasi siswa rendah pada tes mengukur pemahaman tentang apa guru telah disajikan. Sebagai contoh, Smith dan Cotten (1980) direkam 12-sampai 14 menit pelajaran matematika. Sepasang pelajaran yang terkandung 120 hal ketidakjelasan, dan pasangan lainnya tidak tercantum. Berikut adalah apa sebuah paragraf tanpa ketidakjelasan tampak seperti: Teorema pertama melibatkan dua akord berpotongan pada satu titik dalam lingkaran. Lihatlah gambar 1. AB berpotongan CD pada titik E. Panjang ruas garis AE adalah 4 unit. Panjang ruas garis EB adalah 3 unit. Panjang ruas garis ED adalah 6 unit. Panjang ruas garis EC adalah 2 unit. Perhatikan bahwa 4 x 3 = 2 x 6 (p 672.) Isi yang sama, dalam versi high-ketidakjelasan nya, seperti ini: Teorema pertama semacam melibatkan beberapa akord berpotongan pada satu titik dalam lingkaran. Saya kira kita mungkin harus melihat gambar 1. AB memotong CD di titik E, Anda lihat. Lihatlah gambar 2. Panjang ruas garis Ae adalah 4 unit. Panjang ruas garis EB adalah 3 unit. Panjang ruas garis ED adalah 6 unit, seperti yang Anda lihat. Panjang ruas garis EC, Anda tahu, adalah 2 unit. Anda mungkin melihat bahwa 4 x 3 = 2 x 6 (p.672) Daftar istilah ketidakjelasan digunakan dalam percobaan oleh Smith dan Cotten (1980) termasuk kategori berikut dan kata-kata:  penunjukan ambigu: kondisi, entah bagaimana, di suatu tempat, hal  Aproksimasi: sekitar, sedikit, hanya sekitar, agak, semacam  "menggertak" dan pemulihan: sebenarnya, dan sebagainya, dan sebagainya, tetap, seperti yang Anda tahu, singkatnya, pada dasarnya, pada kenyataannya, di lain kata-kata, tentu saja, atau apa pun, untuk membuat cerita panjang, Anda tahu, Anda melihat  penerimaan Kesalahan: maaf, saya minta maaf, saya kira kuantifikasi tak tentu : sekelompok, beberapa, beberapa, beberapa, berbagai  multiplicities: jenis (s) dari, jenis (s) dari  Kemungkinan: peluang yang, bisa, mungkin, mungkin, mungkin, mungkin, tampaknya  Probabilitas: umumnya, secara umum, sering, biasanya, mungkin, biasanya Para siswa mengambil tes 20-item setelah mendengar tinggi ketidakjelasan atau Leson tidak ada ketidakjelasan. Setiap pelajaran didampingi oleh tokoh-tokoh yang diproyeksikan menunjukkan konten geometris yang diajarkan. Para siswa yang menerima pelajaran tinggi ketidakjelasan memiliki skor rata-rata jauh lebih rendah pada tes dari siswa yang menerima pelajaran ketidakjelasan bebas. Selain itu, siswa yang mendengar pelajaran terakhir dievaluasi guru dan presentasinya lebih menguntungkan. Percobaan ini dan studi tambahan yang berasal dari karya asli pada ketidakjelasan oleh Hiller (1968) telah menunjukkan secara meyakinkan ketidakjelasan yang menekan prestasi siswa dan sikap. Guru tidak hanya harus tahu subjek tetapi juga menghindari kata-kata dan frase yang memberikan kesan ketidakjelasan. THE KESIMPULAN DARI KULIAH THE Setelah selesai tubuh kuliah, guru datang ke kesimpulan. Apa yang harus ia lakukan? Di sini sekali lagi sejumlah fungsi telah diidentifikasi oleh Shutes (1969) atas dasar analisis tentang rekaman video dari apa yang beberapa guru waktu first benar-benar melakukan. Mari kita mempertimbangkan keinginan dan cara-cara di mana masing-masing fungsi dapat dilakukan. Fungsi Kesimpulan yang Pada membawa kuliah Anda berakhir, Anda dapat (a) terlibat dalam fasilitas sosial, (b) meminta siswa untuk mengingat ide-ide atau memberikan contoh, pertanyaan (c) jawaban siswa (d) menentukan apa siswa sekarang harus melalui semacam "postorganizer". Sebagai contoh, Anda dapat mengekspresikan kesenangan karena telah mampu mengajar kelas dan berharap para siswa keberuntungan. Anda dapat membuat usaha terakhir untuk mempromosikan pemahaman dengan meminta siswa untuk mengingat ide-ide tertentu atau untuk memberikan contoh, definisi, dan aplikasi. Anda dapat memberikan klarifikasi dengan menyediakan informasi tambahan dalam menanggapi pertanyaan siswa, pada titik yang telah dibuat, dengan memiliki siswa lain menjawab pertanyaan siswa mengulang, dan dengan menerapkan ide-ide dalam pelajaran untuk masalah baru tertentu atau situasi. Guru dapat menawarkan spesifikasi apa yang siswa sekarang harus tahu, mengidentifikasi titik kunci, memberikan penekanan, mengulang, atau mengajukan pertanyaan tentang pokok-pokok dalam pelajaran. Dalam studinya kegunaan guru dari fungsi-fungsi ini, Shutes (1969) menemukan bahwa mulai guru yang lebih efektif dalam sesi satu jam, seperti yang diperkirakan dari nilai siswa mereka pada tes prestasi, yang terutama dibedakan dalam sejauh mana mereka lakukan sebagai berikut:
























Sedang diterjemahkan, harap tunggu..
 
Bahasa lainnya
Dukungan alat penerjemahan: Afrikans, Albania, Amhara, Arab, Armenia, Azerbaijan, Bahasa Indonesia, Basque, Belanda, Belarussia, Bengali, Bosnia, Bulgaria, Burma, Cebuano, Ceko, Chichewa, China, Cina Tradisional, Denmark, Deteksi bahasa, Esperanto, Estonia, Farsi, Finlandia, Frisia, Gaelig, Gaelik Skotlandia, Galisia, Georgia, Gujarati, Hausa, Hawaii, Hindi, Hmong, Ibrani, Igbo, Inggris, Islan, Italia, Jawa, Jepang, Jerman, Kannada, Katala, Kazak, Khmer, Kinyarwanda, Kirghiz, Klingon, Korea, Korsika, Kreol Haiti, Kroat, Kurdi, Laos, Latin, Latvia, Lituania, Luksemburg, Magyar, Makedonia, Malagasi, Malayalam, Malta, Maori, Marathi, Melayu, Mongol, Nepal, Norsk, Odia (Oriya), Pashto, Polandia, Portugis, Prancis, Punjabi, Rumania, Rusia, Samoa, Serb, Sesotho, Shona, Sindhi, Sinhala, Slovakia, Slovenia, Somali, Spanyol, Sunda, Swahili, Swensk, Tagalog, Tajik, Tamil, Tatar, Telugu, Thai, Turki, Turkmen, Ukraina, Urdu, Uyghur, Uzbek, Vietnam, Wales, Xhosa, Yiddi, Yoruba, Yunani, Zulu, Bahasa terjemahan.

Copyright ©2024 I Love Translation. All reserved.

E-mail: