These events are very brief (one month) and very rare: historical reco terjemahan - These events are very brief (one month) and very rare: historical reco Bahasa Indonesia Bagaimana mengatakan

These events are very brief (one mo

These events are very brief (one month) and very rare: historical records show that in our Galaxy they have occurred only every 300 yr. The most recent nearby supernova occurred in 1987 (code name SN1987A), not exactly in our Galaxy but in our small satellite, the Large Magellanic Cloud (LMC). Since it has now become possible to observe supernovae in very distant galaxies, one does not have to wait 300 yr for the next one.
The physical reason for this type of explosion (a Type SNII supernova) is the accumulation of Fe group elements at the core of a massive red giant star of size 8–200M_, which has already burned its hydrogen, helium and other light elements. Another type of explosion (a Type SNIa supernova) occurs in binary star systems, composed of a heavy white dwarf and a red giant star. White dwarfs have masses of the order of the Sun, but sizes of the order of Earth, whereas red
giants are very large but contain very little mass. The dwarf then accretes mass from the red giant due to its much stronger gravitational field. As long as the fusion process in the dwarf continues to burn lighter elements to Fe group elements, first the gas pressure and subsequently the electron degeneracy pressure balance the gravitational attraction (degeneracy pressure is explained in Section 5.3). But when a rapidly burning dwarf star reaches a mass of 1.44M_, the so-called Chandrasekhar mass, or in the case of a red giant when the iron core reaches that mass, no force is sufficient to oppose the gravitational collapse. The electrons and protons in the core transform into neutrinos and neutrons, respectively, most of the gravitational energy escapes in the form of neutrinos, and the remainder is a neutron star which is stabilized against further gravitational collapse by the degeneracy pressure of the neutrons. As further matter falls in, it bounces against the extremely dense neutron star and travels outwards as energetic shock waves. In the collision between the shock waves and the outer mantle, violent nuclear reactions take place and extremely bright light is generated. This is the supernova explosion visible from very far away. The nuclear reactions in the mantle create all the elements; in particular, the elements heavier than Fe, Ni and Cr on Earth have all been created in supernova explosions in the distant
past.
The released energy is always the same since the collapse always occurs at the Chandrasekhar mass, thus in particular the peak brightness of Type Ia supernovae can serve as remarkably precise standard candles visible from very far away. (The term standard candle is used for any class of astronomical objects whose intrinsic luminosity can be inferred independently of the observed flux.) Additional information is provided by the colour, the spectrum, and an empirical correlation observed between the timescale of the supernova light curve and the peak luminosity. The usefulness of supernovae of Type Ia as standard candles is that they can be seen out to great distances, 500 Mpc or z ≈ 0.1, and that the internal precision of the method is very high. At greater distances one can still find supernovae, but Hubble’s linear law (1.15) is no longer valid—the expansion starts to accelerate.
The SNeIa are the brightest and most homogeneous class of supernovae. (The plural of SN is abbreviated SNe.) Type II are fainter, and show a wider variation in luminosity. Thus they are not standard candles, but the time evolution of their expanding atmospheres provides an indirect distance indicator, useful out to some 200 Mpc.
0/5000
Dari: -
Ke: -
Hasil (Bahasa Indonesia) 1: [Salinan]
Disalin!
These events are very brief (one month) and very rare: historical records show that in our Galaxy they have occurred only every 300 yr. The most recent nearby supernova occurred in 1987 (code name SN1987A), not exactly in our Galaxy but in our small satellite, the Large Magellanic Cloud (LMC). Since it has now become possible to observe supernovae in very distant galaxies, one does not have to wait 300 yr for the next one.The physical reason for this type of explosion (a Type SNII supernova) is the accumulation of Fe group elements at the core of a massive red giant star of size 8–200M_, which has already burned its hydrogen, helium and other light elements. Another type of explosion (a Type SNIa supernova) occurs in binary star systems, composed of a heavy white dwarf and a red giant star. White dwarfs have masses of the order of the Sun, but sizes of the order of Earth, whereas redgiants are very large but contain very little mass. The dwarf then accretes mass from the red giant due to its much stronger gravitational field. As long as the fusion process in the dwarf continues to burn lighter elements to Fe group elements, first the gas pressure and subsequently the electron degeneracy pressure balance the gravitational attraction (degeneracy pressure is explained in Section 5.3). But when a rapidly burning dwarf star reaches a mass of 1.44M_, the so-called Chandrasekhar mass, or in the case of a red giant when the iron core reaches that mass, no force is sufficient to oppose the gravitational collapse. The electrons and protons in the core transform into neutrinos and neutrons, respectively, most of the gravitational energy escapes in the form of neutrinos, and the remainder is a neutron star which is stabilized against further gravitational collapse by the degeneracy pressure of the neutrons. As further matter falls in, it bounces against the extremely dense neutron star and travels outwards as energetic shock waves. In the collision between the shock waves and the outer mantle, violent nuclear reactions take place and extremely bright light is generated. This is the supernova explosion visible from very far away. The nuclear reactions in the mantle create all the elements; in particular, the elements heavier than Fe, Ni and Cr on Earth have all been created in supernova explosions in the distantpast.
The released energy is always the same since the collapse always occurs at the Chandrasekhar mass, thus in particular the peak brightness of Type Ia supernovae can serve as remarkably precise standard candles visible from very far away. (The term standard candle is used for any class of astronomical objects whose intrinsic luminosity can be inferred independently of the observed flux.) Additional information is provided by the colour, the spectrum, and an empirical correlation observed between the timescale of the supernova light curve and the peak luminosity. The usefulness of supernovae of Type Ia as standard candles is that they can be seen out to great distances, 500 Mpc or z ≈ 0.1, and that the internal precision of the method is very high. At greater distances one can still find supernovae, but Hubble’s linear law (1.15) is no longer valid—the expansion starts to accelerate.
The SNeIa are the brightest and most homogeneous class of supernovae. (The plural of SN is abbreviated SNe.) Type II are fainter, and show a wider variation in luminosity. Thus they are not standard candles, but the time evolution of their expanding atmospheres provides an indirect distance indicator, useful out to some 200 Mpc.
Sedang diterjemahkan, harap tunggu..
Hasil (Bahasa Indonesia) 2:[Salinan]
Disalin!
Peristiwa ini sangat singkat (satu bulan) dan sangat jarang: catatan sejarah menunjukkan bahwa di galaksi kita mereka hanya terjadi setiap 300 tahun. Terbaru supernova terdekat terjadi pada tahun 1987 (kode nama SN1987A), tidak tepat di galaksi kita, tetapi di satelit kecil kami, Awan Magellan Besar (LMC). Karena sekarang telah menjadi mungkin untuk mengamati supernova di galaksi yang sangat jauh, kita tidak harus menunggu 300 tahun untuk yang berikutnya.
Alasan fisik untuk jenis ledakan (Tipe SNII supernova) adalah akumulasi dari unsur kelompok Fe di inti dari sebuah bintang raksasa merah besar ukuran 8-200M_, yang telah dibakar hidrogen, helium dan elemen ringan lainnya. Tipe lain dari ledakan (Tipe SNIA supernova) terjadi di sistem bintang biner, terdiri dari kerdil putih berat dan bintang raksasa merah. Katai putih memiliki massa urutan Sun, tapi ukuran urutan bumi, sedangkan merah
raksasa yang sangat besar tapi mengandung massa sangat sedikit. Kurcaci kemudian accretes massa dari raksasa merah karena medan gravitasi lebih kuat. Selama proses fusi di dwarf terus membakar elemen ringan untuk elemen kelompok Fe, pertama tekanan gas dan kemudian elektron tekanan degenerasi menyeimbangkan daya tarik gravitasi (tekanan degenerasi dijelaskan dalam Bagian 5.3). Tapi ketika sebuah bintang kerdil terbakar dengan cepat mencapai massa 1.44M_, disebut massa Chandrasekhar, atau dalam kasus raksasa merah ketika inti besi mencapai massa itu, tidak ada kekuatan yang cukup untuk menentang keruntuhan gravitasi. Elektron dan proton dalam inti berubah menjadi neutrino dan neutron, masing-masing, sebagian besar energi gravitasi lolos dalam bentuk neutrino, dan sisanya adalah bintang neutron yang stabil terhadap keruntuhan gravitasi lebih lanjut dengan tekanan degenerasi dari neutron. Seperti masalah ini lebih lanjut jatuh, itu memantul terhadap bintang neutron sangat padat dan perjalanan ke luar sebagai gelombang kejut energik. Dalam tabrakan antara gelombang kejut dan mantel luar, reaksi nuklir kekerasan terjadi dan cahaya yang sangat terang yang dihasilkan. Ini adalah ledakan supernova terlihat dari sangat jauh. Reaksi nuklir dalam mantel membuat semua elemen; khususnya, unsur-unsur yang lebih berat daripada Fe, Ni dan Cr di Bumi semuanya telah dibuat dalam ledakan supernova dalam jauh
masa lalu.
Energi yang dirilis selalu sama sejak runtuhnya selalu terjadi pada massa Chandrasekhar, sehingga khususnya puncak kecerahan ketik supernova Ia dapat berfungsi lilin standar sebagai sangat tepat terlihat dari sangat jauh. (Lilin standar istilah digunakan untuk setiap kelas obyek astronomi yang luminositas intrinsik dapat disimpulkan secara independen dari fluks diamati.) Informasi tambahan disediakan oleh warna, spektrum, dan korelasi empiris yang diamati antara skala waktu dari kurva cahaya supernova dan puncak luminositas. Kegunaan supernova Tipe Ia lilin standar adalah bahwa mereka dapat dilihat untuk jarak yang jauh, 500 Mpc atau z ≈ 0,1, dan bahwa presisi internal metode ini sangat tinggi. Pada jarak yang lebih besar masih dapat menemukan supernova, tetapi hukum linear Hubble (1.15) tidak berlaku lagi-ekspansi mulai mempercepat.
The SNeIa adalah terang dan paling homogen kelas supernova. (The jamak dari SN disingkat SNE.) Tipe II yang redup, dan menunjukkan variasi yang lebih luas di luminositas. Sehingga mereka tidak standar lilin, tapi waktu evolusi atmosfer memperluas mereka memberikan indikator jarak tidak langsung, berguna untuk sekitar 200 Mpc.
Sedang diterjemahkan, harap tunggu..
 
Bahasa lainnya
Dukungan alat penerjemahan: Afrikans, Albania, Amhara, Arab, Armenia, Azerbaijan, Bahasa Indonesia, Basque, Belanda, Belarussia, Bengali, Bosnia, Bulgaria, Burma, Cebuano, Ceko, Chichewa, China, Cina Tradisional, Denmark, Deteksi bahasa, Esperanto, Estonia, Farsi, Finlandia, Frisia, Gaelig, Gaelik Skotlandia, Galisia, Georgia, Gujarati, Hausa, Hawaii, Hindi, Hmong, Ibrani, Igbo, Inggris, Islan, Italia, Jawa, Jepang, Jerman, Kannada, Katala, Kazak, Khmer, Kinyarwanda, Kirghiz, Klingon, Korea, Korsika, Kreol Haiti, Kroat, Kurdi, Laos, Latin, Latvia, Lituania, Luksemburg, Magyar, Makedonia, Malagasi, Malayalam, Malta, Maori, Marathi, Melayu, Mongol, Nepal, Norsk, Odia (Oriya), Pashto, Polandia, Portugis, Prancis, Punjabi, Rumania, Rusia, Samoa, Serb, Sesotho, Shona, Sindhi, Sinhala, Slovakia, Slovenia, Somali, Spanyol, Sunda, Swahili, Swensk, Tagalog, Tajik, Tamil, Tatar, Telugu, Thai, Turki, Turkmen, Ukraina, Urdu, Uyghur, Uzbek, Vietnam, Wales, Xhosa, Yiddi, Yoruba, Yunani, Zulu, Bahasa terjemahan.

Copyright ©2024 I Love Translation. All reserved.

E-mail: