Mohamed, Verhelst, & Delcour, 2006; Lamberts, Rombouts, Brijs, Gebruer terjemahan - Mohamed, Verhelst, & Delcour, 2006; Lamberts, Rombouts, Brijs, Gebruer Bahasa Indonesia Bagaimana mengatakan

Mohamed, Verhelst, & Delcour, 2006;

Mohamed, Verhelst, & Delcour, 2006; Lamberts, Rombouts, Brijs, Gebruers, & Delcour, 2008).
P3 showed the highest content of RS among the pasta samples, suggesting that RS content was affected from both the parboiling process and the extrusion conditions, in agreement with previ- ous reports (Singh, Dartois, & Kaur, 2010). Higher amounts of RS starch were found in parboiled rice with respect to raw rice (Casiraghi, Brighenti, Pellegrini, Leopardi, & Testolin, 1993; Eggum, Juliano, Perez, & Acedo, 1993). Extrusion-cooking was conducive to a compact product structure (Marti et al., 2010), also due to reorganization of the crystalline structure of resistant starch. This behaviour is consistent with the viscoamilographic data in Fig. 3, suggesting the presence of starch granules with a high swelling capacity in P1. Indeed, sample P1 absorbed the greatest amount of water (Table 1), consistent with high swelling capacity of starch in this pasta, and with reports relating the granules swelling to the tendency to leach contents into cooking water (Sisson & Bately,
2003).

3.3.2. In vivo glycemic response
Incremental post-prandial blood glucose curves after consump- tion of the various rice-based pasta samples by healthy volunteers are shown in Fig. 6. No significant differences were detected among all the samples at any time of these tests. However, in the case of P1, the glycemic peak shifted towards a longer time (45 min) than in pasta prepared from parboiled flour (P2 and P3). This suggests that parboiling affected the starch digestion rate and glucose intesti- nal absorption. Changes in accessibility to degradation of starch in samples that underwent one or more steps of thermal treatment (see Fig. 1 and related comments) translate into a lower glycemic index for P2 and P3 (61 and 65, respectively) in comparison with P1 (71), although these differences are not statistically significant. The similar trend of the glycemic response in P2 and P3, that have been shown to display quite different starch structures (see Fig. 3 and related comments), may in turn be related to the fact that the different protein organization in these two samples may counter- act – at least to some extent – the effects of extrusion-cooking on specific starch fractions.

4. Conclusions

This study shows that individual treatments (or their combina- tion) had a markedly different impact on the structural features of macromolecules in rice-based pasta. Pasta made from parboiled rice through an extrusion-cooking process (P3) was extremely firm after cooking. This seems to be consequent to the presence

in the uncooked pasta of a peculiar amylopectin organization, as made evident by the limited accessibility of this polysaccharide to pullulanase, that hydrolyzes -1-6 glycosidic bonds. At the oppo- site end of the sensory spectrum was the pasta made through

soft. This stems from limited protein reticulation, and from part of the starch being present in a compact native-like conformation, as evidenced by its limited accessibility to -amylase action in the uncooked pasta and by the delayed increase in blood glucose when this pasta is eaten.
Pasta made from parboiled rice flour through conventional

in the uncooked material was loosely structured, as indicated by its sensitivity to the action of pullulanase, whereas starch as a whole had a structure comparable to that of pasta P3. These structural considerations may explain the observation that the time course of post-prandial glucose levels were almost overlapping in subjects consuming P2 or P3, where treatments increased the content of resistant starch.
From a methodological standpoint, the approaches reported here seem able to provide useful insights as for improving our current molecular-level understanding of the effects of treatment conditions (and of their combination and temporal sequence) on overall product quality.


0/5000
Dari: -
Ke: -
Hasil (Bahasa Indonesia) 1: [Salinan]
Disalin!
Mohamed, Verhelst, & Delcour, 2006; Lamberts, Rombouts, Brijs, Gebruers, & Delcour, 2008).
P3 menunjukkan isi tertinggi RS antara sampel pasta, menyarankan bahwa konten RS terpengaruh dari proses parboiling dan kondisi ekstrusi, dalam perjanjian dengan previ-ous laporan (Singh, Dartois, & Kaur, 2010). Jumlah yang lebih tinggi dari Pati RS ditemukan dalam beras pratanak sehubungan dengan beras (Casiraghi, Brighenti, Pellegrini, Leopardi, & Testolin, 1993; Eggum, Juliano, Perez, & Acedo, 1993). Ekstrusi-memasak adalah kondusif untuk struktur kompak Produk (Marti et al., 2010), juga karena reorganisasi struktur kristal pati resisten. Perilaku ini konsisten dengan data viscoamilographic dalam Fig. 3, menunjukkan adanya Pati butiran pembengkakan berkapasitas tinggi di P1. Memang, sampel P1 diserap jumlah terbesar dari air (Tabel 1), konsisten dengan kapasitas pembengkakan Pati dalam pasta ini, dan dengan Rapor butiran bengkak untuk kecenderungan untuk meluluhkan isi ke dalam memasak air (Sisson & Bately,
2003).

3.3.2. In vivo glikemik respon
inkremental pasca prandial darah glukosa kurva setelah consump-tion sampel beras berbasis pasta berbagai oleh sukarelawan sehat ditunjukkan pada gambar 6. Ada perbedaan significant yang terdeteksi di antara semua sampel setiap saat tes ini. Namun, dalam kasus P1, puncak glikemik bergeser ke arah waktu lebih lama (45menit) daripada dalam pasta yang disiapkan dari pratanak flour (P2 dan P3). Hal ini menunjukkan bahwa pratanak terpengaruh Pati pencernaan tingkat dan glukosa intesti-nal penyerapan. Perubahan dalam aksesibilitas degradasi Pati dalam sampel yang mengalami satu atau lebih langkah perawatan termal (Lihat gambar 1 dan komentar-komentar) diterjemahkan ke dalam indeks glisemik rendah untuk P2 dan P3 (61 dan 65, masing-masing) dibandingkan dengan P1 (71), meskipun tidak perbedaan-perbedaan ini Statistik significant. Tren serupa respon glikemik di P2 dan P3, yang telah ditunjukkan untuk menampilkan struktur Pati sangat berbeda (Lihat gambar 3 dan komentar-komentar), mungkin pada gilirannya terkait dengan fakta bahwa organisasi protein yang berbeda dalam dua sampel ini mungkin counter-tindakan-setidaknya sampai batas tertentu-efek ekstrusi-memasak pada specific Pati pecahan.

4. Kesimpulan

Studi ini menunjukkan bahwa perawatan individu (atau mereka combina-tion) memiliki dampak yang sangat berbeda pada ciri struktur makromolekul dalam beras berbasis pasta. Pasta yang terbuat dari beras pratanak melalui proses ekstrusi-memasak (P3) adalah sangat berlandaskan setelah memasak. Hal ini tampaknya menjadi konsekuen dengan kehadiran

pasta mentah organisasi aneh amilopektin, seperti dibuat jelas oleh aksesibilitas terbatas polisakarida ini untuk pullulanase, yang hydrolyzes -1-6 glycosidic obligasi. Di situs oppo akhir spektrum sensorik adalah pasta dilakukan melalui

lembut. Ini berasal dari reticulation terbatas protein, dan dari bagian dari Pati hadir dalam konformasi asli-seperti kompak, sebagaimana dibuktikan oleh aksesibilitas terbatas untuk - amilase tindakan pasta mentah dan peningkatan tertunda glukosa darah ketika pasta ini dimakan.
Pasta terbuat dari beras pratanak flour melalui konvensional

dalam materi mentah yang longgar terstruktur, seperti yang ditunjukkan oleh kepekaan terhadap tindakan pullulanase, sedangkan Pati sebagai keseluruhan struktur yang sebanding dengan pasta P3. Pertimbangan-pertimbangan struktural ini dapat menjelaskan pengamatan yang tentu saja waktu kadar glukosa pasca prandial hampir yang tumpang tindih dalam mata pelajaran yang mengkonsumsi P2 atau P3, dimana perawatan meningkat isi dari pati resisten.
dari sudut pandang metodologis, pendekatan yang dilaporkan di sini tampaknya mampu memberikan wawasan yang berguna untuk meningkatkan tingkat molekuler pemahaman kita saat ini efek pengobatan kondisi (dan mereka kombinasi dan urutan sementara) pada keseluruhan kualitas produk.


Sedang diterjemahkan, harap tunggu..
Hasil (Bahasa Indonesia) 2:[Salinan]
Disalin!
Mohamed, Verhelst, & Delcour, 2006; Lamberts, Rombouts, Brijs, Gebruers, & Delcour, 2008).
P3 showed the highest content of RS among the pasta samples, suggesting that RS content was affected from both the parboiling process and the extrusion conditions, in agreement with previ- ous reports (Singh, Dartois, & Kaur, 2010). Higher amounts of RS starch were found in parboiled rice with respect to raw rice (Casiraghi, Brighenti, Pellegrini, Leopardi, & Testolin, 1993; Eggum, Juliano, Perez, & Acedo, 1993). Extrusion-cooking was conducive to a compact product structure (Marti et al., 2010), also due to reorganization of the crystalline structure of resistant starch. This behaviour is consistent with the viscoamilographic data in Fig. 3, suggesting the presence of starch granules with a high swelling capacity in P1. Indeed, sample P1 absorbed the greatest amount of water (Table 1), consistent with high swelling capacity of starch in this pasta, and with reports relating the granules swelling to the tendency to leach contents into cooking water (Sisson & Bately,
2003).

3.3.2. In vivo glycemic response
Incremental post-prandial blood glucose curves after consump- tion of the various rice-based pasta samples by healthy volunteers are shown in Fig. 6. No significant differences were detected among all the samples at any time of these tests. However, in the case of P1, the glycemic peak shifted towards a longer time (45 min) than in pasta prepared from parboiled flour (P2 and P3). This suggests that parboiling affected the starch digestion rate and glucose intesti- nal absorption. Changes in accessibility to degradation of starch in samples that underwent one or more steps of thermal treatment (see Fig. 1 and related comments) translate into a lower glycemic index for P2 and P3 (61 and 65, respectively) in comparison with P1 (71), although these differences are not statistically significant. The similar trend of the glycemic response in P2 and P3, that have been shown to display quite different starch structures (see Fig. 3 and related comments), may in turn be related to the fact that the different protein organization in these two samples may counter- act – at least to some extent – the effects of extrusion-cooking on specific starch fractions.

4. Conclusions

This study shows that individual treatments (or their combina- tion) had a markedly different impact on the structural features of macromolecules in rice-based pasta. Pasta made from parboiled rice through an extrusion-cooking process (P3) was extremely firm after cooking. This seems to be consequent to the presence

in the uncooked pasta of a peculiar amylopectin organization, as made evident by the limited accessibility of this polysaccharide to pullulanase, that hydrolyzes -1-6 glycosidic bonds. At the oppo- site end of the sensory spectrum was the pasta made through

soft. This stems from limited protein reticulation, and from part of the starch being present in a compact native-like conformation, as evidenced by its limited accessibility to -amylase action in the uncooked pasta and by the delayed increase in blood glucose when this pasta is eaten.
Pasta made from parboiled rice flour through conventional

in the uncooked material was loosely structured, as indicated by its sensitivity to the action of pullulanase, whereas starch as a whole had a structure comparable to that of pasta P3. These structural considerations may explain the observation that the time course of post-prandial glucose levels were almost overlapping in subjects consuming P2 or P3, where treatments increased the content of resistant starch.
From a methodological standpoint, the approaches reported here seem able to provide useful insights as for improving our current molecular-level understanding of the effects of treatment conditions (and of their combination and temporal sequence) on overall product quality.


Sedang diterjemahkan, harap tunggu..
 
Bahasa lainnya
Dukungan alat penerjemahan: Afrikans, Albania, Amhara, Arab, Armenia, Azerbaijan, Bahasa Indonesia, Basque, Belanda, Belarussia, Bengali, Bosnia, Bulgaria, Burma, Cebuano, Ceko, Chichewa, China, Cina Tradisional, Denmark, Deteksi bahasa, Esperanto, Estonia, Farsi, Finlandia, Frisia, Gaelig, Gaelik Skotlandia, Galisia, Georgia, Gujarati, Hausa, Hawaii, Hindi, Hmong, Ibrani, Igbo, Inggris, Islan, Italia, Jawa, Jepang, Jerman, Kannada, Katala, Kazak, Khmer, Kinyarwanda, Kirghiz, Klingon, Korea, Korsika, Kreol Haiti, Kroat, Kurdi, Laos, Latin, Latvia, Lituania, Luksemburg, Magyar, Makedonia, Malagasi, Malayalam, Malta, Maori, Marathi, Melayu, Mongol, Nepal, Norsk, Odia (Oriya), Pashto, Polandia, Portugis, Prancis, Punjabi, Rumania, Rusia, Samoa, Serb, Sesotho, Shona, Sindhi, Sinhala, Slovakia, Slovenia, Somali, Spanyol, Sunda, Swahili, Swensk, Tagalog, Tajik, Tamil, Tatar, Telugu, Thai, Turki, Turkmen, Ukraina, Urdu, Uyghur, Uzbek, Vietnam, Wales, Xhosa, Yiddi, Yoruba, Yunani, Zulu, Bahasa terjemahan.

Copyright ©2024 I Love Translation. All reserved.

E-mail: