Enhancing Barcode Scanner Design Advantages of an Integrated Solution  terjemahan - Enhancing Barcode Scanner Design Advantages of an Integrated Solution  Bahasa Indonesia Bagaimana mengatakan

Enhancing Barcode Scanner Design Ad

Enhancing Barcode Scanner Design


Advantages of an Integrated Solution Based on a 32-bit Microcontroller
scanned barcode

Barcode scanners have become such a ubiquitous technology that it is easy to take the complexity of their underlying designs for granted. Barcode scanners require multiple discrete integrated circuits and an array of passive and active circuitry to provide the functionality and reliability that end users have come to expect. Many barcode scanners generally use an optical sensor, such as a charge-coupled device (CCD), which outputs an analog representation of what is “visible” to the sensor to an analog-to-digital converter (ADC) controlled by a microcontroller (MCU). The MCU interprets the ADC’s output as a sequence of thick and thin black and white bars and processes this sequence further to derive a string of characters from the pattern. The character sequence may be encoded in any one of a number of well-defined barcode protocols, such as Code 39.

Additional features found in barcode scanners include USB connectivity, regulators, audio output (usually driven by a discrete digital-to-analog converter (DAC) or simple pulse-width modulation (PWM)), and other glue logic for level-shifting between components running from 3 volts, such as the MCU, and components running from 5 volts, such as the CCD.

The design challenge for any developer entering a mature market is to create a disruptive product. A barcode scanner design is a prime example of a well-defined application area in which developers can disrupt the market by providing a more cost-effective, reliable solution that reduces bill-of-materials (BOM) cost and leverages the processing power of advanced 32-bit mixed-signal MCUs.


Charge-Coupled Device (CCD) Overview

The barcode scanner’s CCD optically scans a wide, narrow area and converts optical information into a sequence of analog electronic pulses. Each pulse’s voltage level represents the state of one pixel within the CCD’s scan range. Many commonly used CCDs in handheld barcode scanners produce output at a resolution of a few thousand pixels.

A CCD relies on a controlling MCU to provide a clock source. Clock pulses fed into the CCD’s shift register clock inputs initiate a scan, and the CCD synchronously outputs a voltage proportional to the light to the provided clock. The voltage level describing the pixel state usually contains a direct current (dc) bias, and the voltage swing between optical black and optical white can vary depending on the CCD used and other design factors.


Advantages of an Integrated Solution

In traditional barcode scanner designs, each system feature requires a collection of discrete components. For example, the barcode sensing subsystem requires a CCD surrounded by supporting passive components, a discrete ADC and a controlling MCU. The audio subsystem often requires a discrete DAC, a filtering circuit and a small speaker. The USB subsystem usually requires an external crystal to meet timing requirements imposed by the USB protocol. Developers who find ways to eliminate some of these components can minimize the total build cost of the board, shrink the minimum board size required for layout and reduce the system’s average current draw. In addition, combining more features into fewer components can streamline the development process and speed time-to-market. A highly integrated solution (see Figure 1) also improves system reliability because a design with fewer components reduces potential points of failure in the system.
0/5000
Dari: -
Ke: -
Hasil (Bahasa Indonesia) 1: [Salinan]
Disalin!
Enhancing Barcode Scanner Design Advantages of an Integrated Solution Based on a 32-bit Microcontrollerscanned barcode Barcode scanners have become such a ubiquitous technology that it is easy to take the complexity of their underlying designs for granted. Barcode scanners require multiple discrete integrated circuits and an array of passive and active circuitry to provide the functionality and reliability that end users have come to expect. Many barcode scanners generally use an optical sensor, such as a charge-coupled device (CCD), which outputs an analog representation of what is “visible” to the sensor to an analog-to-digital converter (ADC) controlled by a microcontroller (MCU). The MCU interprets the ADC’s output as a sequence of thick and thin black and white bars and processes this sequence further to derive a string of characters from the pattern. The character sequence may be encoded in any one of a number of well-defined barcode protocols, such as Code 39.Additional features found in barcode scanners include USB connectivity, regulators, audio output (usually driven by a discrete digital-to-analog converter (DAC) or simple pulse-width modulation (PWM)), and other glue logic for level-shifting between components running from 3 volts, such as the MCU, and components running from 5 volts, such as the CCD.The design challenge for any developer entering a mature market is to create a disruptive product. A barcode scanner design is a prime example of a well-defined application area in which developers can disrupt the market by providing a more cost-effective, reliable solution that reduces bill-of-materials (BOM) cost and leverages the processing power of advanced 32-bit mixed-signal MCUs. Charge-Coupled Device (CCD) OverviewThe barcode scanner’s CCD optically scans a wide, narrow area and converts optical information into a sequence of analog electronic pulses. Each pulse’s voltage level represents the state of one pixel within the CCD’s scan range. Many commonly used CCDs in handheld barcode scanners produce output at a resolution of a few thousand pixels.A CCD relies on a controlling MCU to provide a clock source. Clock pulses fed into the CCD’s shift register clock inputs initiate a scan, and the CCD synchronously outputs a voltage proportional to the light to the provided clock. The voltage level describing the pixel state usually contains a direct current (dc) bias, and the voltage swing between optical black and optical white can vary depending on the CCD used and other design factors. Advantages of an Integrated SolutionIn traditional barcode scanner designs, each system feature requires a collection of discrete components. For example, the barcode sensing subsystem requires a CCD surrounded by supporting passive components, a discrete ADC and a controlling MCU. The audio subsystem often requires a discrete DAC, a filtering circuit and a small speaker. The USB subsystem usually requires an external crystal to meet timing requirements imposed by the USB protocol. Developers who find ways to eliminate some of these components can minimize the total build cost of the board, shrink the minimum board size required for layout and reduce the system’s average current draw. In addition, combining more features into fewer components can streamline the development process and speed time-to-market. A highly integrated solution (see Figure 1) also improves system reliability because a design with fewer components reduces potential points of failure in the system.
Sedang diterjemahkan, harap tunggu..
Hasil (Bahasa Indonesia) 2:[Salinan]
Disalin!
Meningkatkan Barcode Scanner Desain


Keuntungan dari Solusi Terpadu Berdasarkan 32-bit Microcontroller
scan barcode

scanner Barcode telah menjadi seperti teknologi di mana-mana yang mudah untuk mengambil kompleksitas desain yang mendasari mereka untuk diberikan. Scanner barcode memerlukan beberapa sirkuit terpadu diskrit dan sebuah array dari sirkuit pasif dan aktif untuk menyediakan fungsionalitas dan kehandalan yang pengguna akhir telah datang ke harapkan. Banyak scanner barcode umumnya menggunakan sensor optik, seperti charge-coupled device (CCD), yang output representasi analog dari apa yang "terlihat" untuk sensor untuk analog-ke-digital converter (ADC) yang dikendalikan oleh mikrokontroler ( MCU). MCU menafsirkan output ADC sebagai urutan bar dan proses urutan ini lebih hitam dan putih tebal dan tipis untuk mendapatkan string karakter dari pola. Urutan karakter dapat dikodekan dalam salah satu dari sejumlah protokol barcode yang terdefinisi dengan baik, seperti Code 39.

Fitur tambahan yang ditemukan di scanner barcode termasuk konektivitas USB, regulator, output audio (biasanya didorong oleh konverter digital-ke-analog diskrit (DAC) atau sederhana pulse-width modulation (PWM)), dan lem logika lainnya untuk tingkat-pergeseran antara komponen berjalan dari 3 volt, seperti MCU, dan komponen berjalan dari 5 volt, seperti CCD.

desain tantangan bagi setiap pengembang memasuki pasar yang matang adalah untuk menciptakan produk mengganggu. Sebuah desain scanner barcode adalah contoh utama dari area aplikasi yang didefinisikan dengan baik di mana pengembang dapat mengganggu pasar dengan menyediakan lebih efektif biaya, solusi handal yang mengurangi tagihan-of-bahan (BOM) biaya dan memanfaatkan kekuatan pengolahan canggih 32-bit sinyal campuran MCUs.


Charge-Coupled Device (CCD) Ikhtisar

CCD barcode scanner optik scan, lahan sempit lebar dan mengubah informasi optik ke urutan pulsa elektronik analog. Tingkat tegangan setiap pulsa mewakili keadaan satu pixel dalam jangkauan scan CCD. Banyak CCD biasa digunakan dalam scanner barcode genggam menghasilkan output pada resolusi beberapa ribu piksel.

Sebuah CCD bergantung pada MCU pengendalian untuk menyediakan sumber jam. Jam pulsa dimasukkan ke register geser jam input CCD ini memulai scan, dan CCD serempak output tegangan sebanding dengan cahaya untuk jam disediakan. Tingkat tegangan menggambarkan keadaan pixel biasanya berisi arus (dc) Bias langsung, dan ayunan tegangan antara hitam optik dan optik putih dapat bervariasi tergantung pada CCD yang digunakan dan faktor desain lainnya.


Keuntungan dari Solusi Terpadu

Dalam desain scanner barcode tradisional, setiap fitur sistem membutuhkan kumpulan komponen diskrit. Sebagai contoh, barcode merasakan subsistem membutuhkan CCD dikelilingi dengan mendukung komponen pasif, ADC diskrit dan MCU pengendali. Subsistem audio yang sering membutuhkan DAC diskrit, sirkuit penyaringan dan speaker kecil. USB subsistem biasanya membutuhkan kristal eksternal untuk memenuhi persyaratan waktu yang dikenakan oleh protokol USB. Pengembang yang menemukan cara untuk menghilangkan beberapa komponen ini dapat meminimalkan total membangun biaya papan, mengecilkan ukuran papan minimum yang diperlukan untuk tata letak dan mengurangi sistem menarik arus rata-rata. Selain itu, menggabungkan lebih banyak fitur ke dalam komponen yang lebih sedikit dapat merampingkan proses pembangunan dan kecepatan waktu-ke-pasar. Sebuah solusi yang sangat terintegrasi (lihat Gambar 1) juga meningkatkan keandalan sistem karena desain dengan komponen yang lebih sedikit mengurangi poin potensi kegagalan dalam sistem.
Sedang diterjemahkan, harap tunggu..
 
Bahasa lainnya
Dukungan alat penerjemahan: Afrikans, Albania, Amhara, Arab, Armenia, Azerbaijan, Bahasa Indonesia, Basque, Belanda, Belarussia, Bengali, Bosnia, Bulgaria, Burma, Cebuano, Ceko, Chichewa, China, Cina Tradisional, Denmark, Deteksi bahasa, Esperanto, Estonia, Farsi, Finlandia, Frisia, Gaelig, Gaelik Skotlandia, Galisia, Georgia, Gujarati, Hausa, Hawaii, Hindi, Hmong, Ibrani, Igbo, Inggris, Islan, Italia, Jawa, Jepang, Jerman, Kannada, Katala, Kazak, Khmer, Kinyarwanda, Kirghiz, Klingon, Korea, Korsika, Kreol Haiti, Kroat, Kurdi, Laos, Latin, Latvia, Lituania, Luksemburg, Magyar, Makedonia, Malagasi, Malayalam, Malta, Maori, Marathi, Melayu, Mongol, Nepal, Norsk, Odia (Oriya), Pashto, Polandia, Portugis, Prancis, Punjabi, Rumania, Rusia, Samoa, Serb, Sesotho, Shona, Sindhi, Sinhala, Slovakia, Slovenia, Somali, Spanyol, Sunda, Swahili, Swensk, Tagalog, Tajik, Tamil, Tatar, Telugu, Thai, Turki, Turkmen, Ukraina, Urdu, Uyghur, Uzbek, Vietnam, Wales, Xhosa, Yiddi, Yoruba, Yunani, Zulu, Bahasa terjemahan.

Copyright ©2024 I Love Translation. All reserved.

E-mail: