Tight JunctionsCell junctions are divided into threecategories, based  terjemahan - Tight JunctionsCell junctions are divided into threecategories, based  Bahasa Indonesia Bagaimana mengatakan

Tight JunctionsCell junctions are d

Tight Junctions
Cell junctions are divided into three
categories, based upon the functions
they serve (figure 7.16): tight junctions, anchoring junctions, and communicating junctions.
Sometimes called occluding junctions, tight junctions connect the
plasma membranes of adjacent cells in
a sheet, preventing small molecules
from leaking between the cells and
through the sheet (figure 7.17). This
allows the sheet of cells to act as a
wall within the organ, keeping molecules on one side or the other.
Creating Sheets of Cells
The cells that line an animal’s digestive tract are organized in a sheet
only one cell thick. One surface of
the sheet faces the inside of the tract
and the other faces the extracellular
space where blood vessels are located. Tight junctions encircle each
cell in the sheet, like a belt cinched
around a pair of pants. The junctions between neighboring cells are so securely attached
that there is no space between them for leakage. Hence,
nutrients absorbed from the food in the digestive tract
must pass directly through the cells in the sheet to enter
the blood.
Partitioning the Sheet
The tight junctions between the cells lining the digestive
tract also partition the plasma membranes of these cells
into separate compartments. Transport proteins in the
membrane facing the inside of the tract carry nutrients
from that side to the cytoplasm of the cells. Other proteins,
located in the membrane on the opposite side of the cells,
transport those nutrients from the cytoplasm to the extracellular fluid, where they can enter the blood. For the sheet
to absorb nutrients properly, these proteins must remain in
the correct locations within the fluid membrane. Tight
junctions effectively segregate the proteins on opposite
sides of the sheet, preventing them from drifting within the
membrane from one side of the sheet to the other. When
tight junctions are experimentally disrupted, just this sort
of migration occurs.
Anchoring Junctions
Anchoring junctions mechanically attach the cytoskeleton of a cell to the cytoskeletons of other cells or to the
extracellular matrix. They are commonest in tissues subject to mechanical stress, such as muscle and skin
epithelium.
Cadherin and Intermediate Filaments:
Desmosomes
Anchoring junctions called desmosomes connect the cytoskeletons of adjacent cells (figure 7.18), while
hemidesmosomes anchor epithelial cells to a basement
membrane. Proteins called cadherins, most of which are
single-pass transmembrane glycoproteins, create the critical link. A variety of attachment proteins link the short cytoplasmic end of a cadherin to the intermediate filaments in
the cytoskeleton. The other end of the cadherin molecule
projects outward from the plasma membrane, joining directly with a cadherin protruding from an adjacent cell in a
firm handshake binding the cells together.
Connections between proteins tethered to the intermediate filaments are much more secure than connections between free-floating membrane proteins. Proteins are suspended within the membrane by relatively weak
interactions between the nonpolar portions of the protein
and the membrane lipids. It would not take much force to
pull an untethered protein completely out of the membrane, as if pulling an unanchored raft out of the water.
Cadherin and Actin Filaments
Cadherins can also connect the actin frameworks of cells in cadherin-mediated junctions (figure 7.19). When they do, they form
less stable links between cells than when
they connect intermediate filaments. Many
kinds of actin-linking cadherins occur in different tissues, as well as in the same tissue at
different times. During vertebrate development, the migration of neurons in the embryo is associated with changes in the type of
cadherin expressed on their plasma membranes. This suggests that gene-controlled
changes in cadherin expression may provide
the migrating cells with a “roadmap” to their
destination.
Integrin-Mediated Links
Anchoring junctions called adherens junctions are another type of junction that connects the actin filaments of one cell with
those of neighboring cells or with the extracellular matrix (figure 7.20). The linking
proteins in these junctions are members of a
large superfamily of cell surface receptors
called integrins. Each integrin is a transmembrane protein composed of two different glycoprotein subunits that extend outward from the plasma membrane. Together,
these subunits bind a protein component of
the extracellular matrix, like two hands
clasping a pole. There appear to be many
different kinds of integrin (cell biologists
have identified 20), each with a slightly different shaped “hand.” The exact component
of the matrix that a given cell binds to depends on which combination of integrins
that cell has in its plasma membrane.
Communicating Junctions
Many cells communicate with adjacent cells through direct
connections, called communicating junctions. In these
junctions, a chemical signal passes directly from one cell to
an adjacent one. Communicating junctions establish direct
physical connections that link the cytoplasms of two cells
together, permitting small molecules or ions to pass from
one to the other. In animals, these direct communication
channels between cells are called gap junctions. In plants,
they are called plasmodesmata.
Gap Junctions in Animals
Communicating junctions called gap junctions are composed of structures called connexons, complexes of six
identical transmembrane proteins (figure 7.21). The proteins in a connexon are arranged in a circle to create a
channel through the plasma membrane that protrudes several nanometers from the cell surface. A gap junction forms
when the connexons of two cells align perfectly, creating an
open channel spanning the plasma membranes of both
cells. Gap junctions provide passageways large enough to
permit small substances, such as simple sugars and amino
acids, to pass from the cytoplasm of one cell to that of the
next, yet small enough to prevent the passage of larger
molecules such as proteins. The connexons hold the plasma
membranes of the paired cells about 4 nanometers apart, in
marked contrast to the more-or-less direct contact between
the lipid bilayers in a tight junction.
Gap junction channels are dynamic structures that can
open or close in response to a variety of factors, including
Ca++ and H+ ions. This gating serves at least one important
function. When a cell is damaged, its plasma membrane
often becomes leaky. Ions in high concentrations outside
the cell, such as Ca++, flow into the damaged cell and shut
its gap junction channels. This isolates the cell and so prevents the damage from spreading to other cells.
0/5000
Dari: -
Ke: -
Hasil (Bahasa Indonesia) 1: [Salinan]
Disalin!
Tight JunctionsCell junctions are divided into threecategories, based upon the functionsthey serve (figure 7.16): tight junctions, anchoring junctions, and communicating junctions.Sometimes called occluding junctions, tight junctions connect theplasma membranes of adjacent cells ina sheet, preventing small moleculesfrom leaking between the cells andthrough the sheet (figure 7.17). Thisallows the sheet of cells to act as awall within the organ, keeping molecules on one side or the other.Creating Sheets of CellsThe cells that line an animal’s digestive tract are organized in a sheetonly one cell thick. One surface ofthe sheet faces the inside of the tractand the other faces the extracellularspace where blood vessels are located. Tight junctions encircle eachcell in the sheet, like a belt cinchedaround a pair of pants. The junctions between neighboring cells are so securely attachedthat there is no space between them for leakage. Hence,nutrients absorbed from the food in the digestive tractmust pass directly through the cells in the sheet to enterthe blood.Partitioning the SheetThe tight junctions between the cells lining the digestivetract also partition the plasma membranes of these cellsinto separate compartments. Transport proteins in themembrane facing the inside of the tract carry nutrientsfrom that side to the cytoplasm of the cells. Other proteins,located in the membrane on the opposite side of the cells,transport those nutrients from the cytoplasm to the extracellular fluid, where they can enter the blood. For the sheetto absorb nutrients properly, these proteins must remain inthe correct locations within the fluid membrane. Tightjunctions effectively segregate the proteins on oppositesides of the sheet, preventing them from drifting within themembrane from one side of the sheet to the other. Whentight junctions are experimentally disrupted, just this sortof migration occurs.Anchoring JunctionsAnchoring junctions mechanically attach the cytoskeleton of a cell to the cytoskeletons of other cells or to theextracellular matrix. They are commonest in tissues subject to mechanical stress, such as muscle and skinepithelium.Cadherin and Intermediate Filaments:DesmosomesAnchoring junctions called desmosomes connect the cytoskeletons of adjacent cells (figure 7.18), whilehemidesmosomes anchor epithelial cells to a basementmembrane. Proteins called cadherins, most of which aresingle-pass transmembrane glycoproteins, create the critical link. A variety of attachment proteins link the short cytoplasmic end of a cadherin to the intermediate filaments inthe cytoskeleton. The other end of the cadherin moleculeprojects outward from the plasma membrane, joining directly with a cadherin protruding from an adjacent cell in afirm handshake binding the cells together.Connections between proteins tethered to the intermediate filaments are much more secure than connections between free-floating membrane proteins. Proteins are suspended within the membrane by relatively weakinteractions between the nonpolar portions of the proteinand the membrane lipids. It would not take much force topull an untethered protein completely out of the membrane, as if pulling an unanchored raft out of the water.Cadherin and Actin FilamentsCadherins can also connect the actin frameworks of cells in cadherin-mediated junctions (figure 7.19). When they do, they formless stable links between cells than whenthey connect intermediate filaments. Manykinds of actin-linking cadherins occur in different tissues, as well as in the same tissue atdifferent times. During vertebrate development, the migration of neurons in the embryo is associated with changes in the type ofcadherin expressed on their plasma membranes. This suggests that gene-controlledchanges in cadherin expression may providethe migrating cells with a “roadmap” to theirdestination.Integrin-Mediated LinksAnchoring junctions called adherens junctions are another type of junction that connects the actin filaments of one cell withthose of neighboring cells or with the extracellular matrix (figure 7.20). The linkingproteins in these junctions are members of alarge superfamily of cell surface receptorscalled integrins. Each integrin is a transmembrane protein composed of two different glycoprotein subunits that extend outward from the plasma membrane. Together,these subunits bind a protein component ofthe extracellular matrix, like two handsclasping a pole. There appear to be manydifferent kinds of integrin (cell biologistshave identified 20), each with a slightly different shaped “hand.” The exact componentof the matrix that a given cell binds to depends on which combination of integrinsthat cell has in its plasma membrane.Communicating JunctionsMany cells communicate with adjacent cells through directconnections, called communicating junctions. In thesejunctions, a chemical signal passes directly from one cell toan adjacent one. Communicating junctions establish directphysical connections that link the cytoplasms of two cellstogether, permitting small molecules or ions to pass fromone to the other. In animals, these direct communicationchannels between cells are called gap junctions. In plants,they are called plasmodesmata.Gap Junctions in AnimalsCommunicating junctions called gap junctions are composed of structures called connexons, complexes of sixidentical transmembrane proteins (figure 7.21). The proteins in a connexon are arranged in a circle to create achannel through the plasma membrane that protrudes several nanometers from the cell surface. A gap junction formswhen the connexons of two cells align perfectly, creating anopen channel spanning the plasma membranes of bothcells. Gap junctions provide passageways large enough topermit small substances, such as simple sugars and aminoacids, to pass from the cytoplasm of one cell to that of thenext, yet small enough to prevent the passage of largermolecules such as proteins. The connexons hold the plasmamembranes of the paired cells about 4 nanometers apart, inmarked contrast to the more-or-less direct contact betweenthe lipid bilayers in a tight junction.Gap junction channels are dynamic structures that canopen or close in response to a variety of factors, includingCa++ and H+ ions. This gating serves at least one importantfunction. When a cell is damaged, its plasma membraneoften becomes leaky. Ions in high concentrations outsidethe cell, such as Ca++, flow into the damaged cell and shutits gap junction channels. This isolates the cell and so prevents the damage from spreading to other cells.
Sedang diterjemahkan, harap tunggu..
Hasil (Bahasa Indonesia) 2:[Salinan]
Disalin!
Persimpangan ketat
Sel persimpangan dibagi menjadi tiga
kategori, berdasarkan fungsi
yang mereka layani (gambar 7.16): persimpangan ketat, penahan sambungan, dan berkomunikasi persimpangan.
Kadang-kadang disebut occluding persimpangan, persimpangan ketat menghubungkan
membran plasma dari sel yang bersebelahan dalam
lembar, mencegah molekul kecil
dari bocor antara sel-sel dan
melalui lembaran (gambar 7.17). Ini
memungkinkan lembar sel untuk bertindak sebagai
dinding dalam organ, menjaga molekul di satu sisi atau yang lain.
Membuat Lembar Sel
Sel-sel yang melapisi saluran pencernaan hewan diatur dalam lembar
hanya satu sel tebal. Salah satu permukaan
lembar menghadapi bagian dalam saluran tersebut
dan yang lainnya menghadapi ekstraselular
ruang di mana pembuluh darah berada. Persimpangan ketat mengelilingi setiap
sel dalam lembar, seperti sabuk cinched
sekitar celana. Persimpangan antara sel-sel tetangga begitu terpasang
tidak ada ruang antara mereka untuk kebocoran. Oleh karena itu,
nutrisi yang diserap dari makanan di saluran pencernaan
harus lulus langsung melalui sel-sel dalam lembar untuk memasukkan
darah.
Mempartisi Lembar yang
di persimpangan ketat antara sel-sel yang melapisi pencernaan
saluran juga partisi membran plasma dari sel-sel ini
menjadi kompartemen terpisah. Protein transportasi di
membran menghadap bagian dalam saluran yang membawa nutrisi
dari sisi itu ke dalam sitoplasma sel. Protein lain,
yang terletak di membran di sisi berlawanan dari sel,
mengangkut nutrisi dari sitoplasma ke cairan ekstrasel, di mana mereka dapat masuk ke dalam darah. Untuk lembar
untuk menyerap nutrisi dengan baik, protein ini harus tetap di
lokasi yang benar dalam membran cairan. Ketat
persimpangan efektif memisahkan protein pada berlawanan
sisi lembaran, mencegah mereka dari hanyut dalam
membran dari satu sisi lembar yang lain. Ketika
persimpangan ketat yang eksperimental terganggu, hanya semacam ini
migrasi terjadi.
Junctions Anchoring
Anchoring junctions mekanis melampirkan sitoskeleton sel ke cytoskeletons sel lain atau ke
matriks ekstraseluler. Mereka umum di jaringan tunduk pada stres mekanik, seperti otot dan kulit
epitel.
Cadherin dan Menengah Filamen:
desmosom
Anchoring persimpangan disebut desmosom menghubungkan cytoskeletons sel yang berdekatan (gambar 7.18), sedangkan
hemidesmosom jangkar sel epitel ke basement
membran. Protein yang disebut cadherin, yang sebagian besar adalah
single-pass glikoprotein transmembran, membuat link kritis. Berbagai protein lampiran menghubungkan ujung sitoplasma pendek cadherin untuk filamen menengah dalam
sitoskeleton. Ujung dari molekul cadherin
proyek luar dari membran plasma, bergabung langsung dengan cadherin menonjol dari sel yang berdekatan dalam
jabat tangan erat mengikat sel bersama-sama.
Koneksi antara protein ditambatkan ke filamen menengah jauh lebih aman daripada hubungan antara gratis- mengambang protein membran. Protein ditangguhkan dalam membran dengan relatif lemah
interaksi antara bagian nonpolar protein
dan lipid membran. Ini tidak akan mengambil banyak kekuatan untuk
menarik sebuah protein untethered benar-benar keluar dari membran, seakan menarik rakit unanchored keluar dari air.
Cadherin dan aktin Filamen
cadherin juga dapat menghubungkan kerangka aktin sel di persimpangan cadherin-dimediasi (gambar 7.19) . Ketika mereka melakukannya, mereka membentuk
hubungan kurang stabil antara sel daripada ketika
mereka terhubung filamen menengah. Banyak
jenis aktin-menghubungkan cadherin terjadi pada jaringan yang berbeda, serta dalam jaringan yang sama di
waktu yang berbeda. Dalam perkembangannya vertebrata, migrasi neuron dalam embrio dikaitkan dengan perubahan jenis
cadherin diekspresikan pada membran plasma mereka. Hal ini menunjukkan bahwa gen yang dikendalikan
perubahan ekspresi cadherin dapat memberikan
sel bermigrasi dengan "peta jalan" untuk mereka
tujuan.
Link integrin-Mediated
Anchoring persimpangan disebut persimpangan adherens yang lain adalah persimpangan yang menghubungkan filamen aktin dari satu sel dengan
orang-orang dari tetangga sel atau dengan matriks ekstraselular (gambar 7.20). The menghubungkan
protein dalam persimpangan ini adalah anggota dari
superfamili besar reseptor permukaan sel
yang disebut integrin. Setiap integrin adalah protein transmembran yang terdiri dari dua subunit glikoprotein yang berbeda yang terbentang dari membran plasma. Bersama-sama,
subunit ini mengikat komponen protein dari
matriks ekstraselular, seperti dua tangan
menggenggam tiang. Tampaknya ada banyak
jenis integrin (ahli biologi sel
telah mengidentifikasi 20), masing-masing dengan sedikit berbeda berbentuk "tangan." Komponen yang tepat
dari matriks yang sel diberikan mengikat tergantung pada kombinasi integrin
yang memiliki sel di nya membran plasma.
Berkomunikasi Persimpangan
Banyak sel berkomunikasi dengan sel yang berdekatan melalui direct
koneksi, disebut berkomunikasi persimpangan. Dalam
persimpangan, sinyal kimia melewati langsung dari satu sel ke
satu berdekatan. Berkomunikasi persimpangan membangun langsung
koneksi fisik yang menghubungkan sitoplasma dari dua sel
bersama-sama, memungkinkan molekul kecil atau ion untuk lulus dari
satu ke yang lain. Pada hewan, ini komunikasi langsung
saluran antar sel disebut gap junction. Pada tumbuhan,
mereka disebut plasmodesmata.
Gap Persimpangan di Hewan
Berkomunikasi persimpangan disebut gap junction terdiri dari struktur yang disebut connexons, kompleks enam
protein transmembran yang identik (gambar 7.21). Protein dalam connexon sebuah disusun dalam lingkaran untuk membuat
saluran melalui membran plasma yang menonjol beberapa nanometer dari permukaan sel. Sebuah bentuk persimpangan kesenjangan
ketika connexons dari dua sel menyelaraskan dengan sempurna, menciptakan
saluran terbuka yang mencakup membran plasma dari kedua
sel. Persimpangan Gap menyediakan lorong cukup besar untuk
memungkinkan zat kecil, seperti gula sederhana dan amino
asam, untuk lulus dari sitoplasma satu sel dengan yang dari
depan, namun cukup kecil untuk mencegah lewatnya lebih besar
molekul seperti protein. The connexons memegang plasma
membran sel dipasangkan sekitar 4 nanometer terpisah, di
kontras dengan lebih-atau-kurang kontak langsung antara
para bilayers lipid di persimpangan ketat.
saluran persimpangan Gap adalah struktur dinamis yang dapat
membuka atau menutup dalam menanggapi berbagai faktor, termasuk
Ca ++ dan ion H +. Gating ini berfungsi setidaknya satu yang penting
fungsi. Ketika sel rusak, membran plasma
sering menjadi bocor. Ion dalam konsentrasi tinggi di luar
sel, seperti Ca ++, mengalir ke sel yang rusak dan menutup
saluran gap junction nya. Ini mengisolasi sel dan mencegah kerusakan menyebar ke sel-sel lain.
Sedang diterjemahkan, harap tunggu..
 
Bahasa lainnya
Dukungan alat penerjemahan: Afrikans, Albania, Amhara, Arab, Armenia, Azerbaijan, Bahasa Indonesia, Basque, Belanda, Belarussia, Bengali, Bosnia, Bulgaria, Burma, Cebuano, Ceko, Chichewa, China, Cina Tradisional, Denmark, Deteksi bahasa, Esperanto, Estonia, Farsi, Finlandia, Frisia, Gaelig, Gaelik Skotlandia, Galisia, Georgia, Gujarati, Hausa, Hawaii, Hindi, Hmong, Ibrani, Igbo, Inggris, Islan, Italia, Jawa, Jepang, Jerman, Kannada, Katala, Kazak, Khmer, Kinyarwanda, Kirghiz, Klingon, Korea, Korsika, Kreol Haiti, Kroat, Kurdi, Laos, Latin, Latvia, Lituania, Luksemburg, Magyar, Makedonia, Malagasi, Malayalam, Malta, Maori, Marathi, Melayu, Mongol, Nepal, Norsk, Odia (Oriya), Pashto, Polandia, Portugis, Prancis, Punjabi, Rumania, Rusia, Samoa, Serb, Sesotho, Shona, Sindhi, Sinhala, Slovakia, Slovenia, Somali, Spanyol, Sunda, Swahili, Swensk, Tagalog, Tajik, Tamil, Tatar, Telugu, Thai, Turki, Turkmen, Ukraina, Urdu, Uyghur, Uzbek, Vietnam, Wales, Xhosa, Yiddi, Yoruba, Yunani, Zulu, Bahasa terjemahan.

Copyright ©2024 I Love Translation. All reserved.

E-mail: