Effect of the Michaelis Constant on Cell Growth. Finally, we turn toth terjemahan - Effect of the Michaelis Constant on Cell Growth. Finally, we turn toth Bahasa Indonesia Bagaimana mengatakan

Effect of the Michaelis Constant on

Effect of the Michaelis Constant on Cell Growth. Finally, we turn to
the effective Michaelis constant (φM or KM) for ternary complex binding to the ribosome, which plays a unique role in our model:
It sets an absolute concentration scale for the T-fraction, whereas
otherwise the model is concerned with allocating fractions of
the total proteome. Fig. 5A shows the maximal growth rate as a
function of the Michaelis constant, with a fixed value of α and with
α optimized for each given value of φM (red and blue lines, respectively).
For fixed α, lowering the Michaelis constant increases
the translation speed, and thus the growth rate, by saturating
ribosomes with ternary complexes. Optimizing α with respect to a
smaller Michealis constant allows the cell to reduce its investment
in the T-fraction and to allocate more resources to the ribosomal
fraction (Fig. 5B), as with a smaller φM the same translation speed
can be achieved with a smaller concentration of ternary complexes.
In either case, a decrease of the Michaelis constant increases
the growth rate. Above we have argued that the value of
the Michaelis constant is set by a physical limit, namely that
binding of ternary complexes to the ribosome cannot be faster
than diffusion-limited. This limit is indicated in Fig. 5 by the
dashed vertical line. It points toward a key role molecular
crowding plays in cell growth. The link between crowding and cell
growth may be complex (37), as increased crowding slows diffusion
(38), but also reduces unbinding (39) and effectively increases
concentrations by reducing the accessible volume. However, if
translation remains close to the diffusion limit, as we suggest
here, slow diffusion should be the dominant effect of crowding
(40, 41).
Mechanistic Interpretation of the Phenomenological Model. We have
noted above that our growth theory with a four-component model
of the proteome leads to a modified interpretation of the slope
(1/γ) of the linear relation between ribosome concentration and
growth rate (Fig. 1A). We now discuss this point in more detail
and show that it resolves an old controversy surrounding the
phenomenological approach to bacterial growth. Within the phenomenological
approach, the mass balance argument presented in
Eqs. 2 and 3 was used to identify the phenomenological parameter
0/5000
Dari: -
Ke: -
Hasil (Bahasa Indonesia) 1: [Salinan]
Disalin!
Effect of the Michaelis Constant on Cell Growth. Finally, we turn tothe effective Michaelis constant (φM or KM) for ternary complex binding to the ribosome, which plays a unique role in our model:It sets an absolute concentration scale for the T-fraction, whereasotherwise the model is concerned with allocating fractions ofthe total proteome. Fig. 5A shows the maximal growth rate as afunction of the Michaelis constant, with a fixed value of α and withα optimized for each given value of φM (red and blue lines, respectively).For fixed α, lowering the Michaelis constant increasesthe translation speed, and thus the growth rate, by saturatingribosomes with ternary complexes. Optimizing α with respect to asmaller Michealis constant allows the cell to reduce its investmentin the T-fraction and to allocate more resources to the ribosomalfraction (Fig. 5B), as with a smaller φM the same translation speedcan be achieved with a smaller concentration of ternary complexes.In either case, a decrease of the Michaelis constant increasesthe growth rate. Above we have argued that the value ofthe Michaelis constant is set by a physical limit, namely thatbinding of ternary complexes to the ribosome cannot be fasterthan diffusion-limited. This limit is indicated in Fig. 5 by thedashed vertical line. It points toward a key role molecularcrowding plays in cell growth. The link between crowding and cellgrowth may be complex (37), as increased crowding slows diffusion(38), but also reduces unbinding (39) and effectively increasesconcentrations by reducing the accessible volume. However, iftranslation remains close to the diffusion limit, as we suggesthere, slow diffusion should be the dominant effect of crowding(40, 41).Mechanistic Interpretation of the Phenomenological Model. We havenoted above that our growth theory with a four-component modelof the proteome leads to a modified interpretation of the slope(1/γ) of the linear relation between ribosome concentration andgrowth rate (Fig. 1A). We now discuss this point in more detailand show that it resolves an old controversy surrounding thephenomenological approach to bacterial growth. Within the phenomenologicalapproach, the mass balance argument presented inEqs. 2 and 3 was used to identify the phenomenological parameter
Sedang diterjemahkan, harap tunggu..
Hasil (Bahasa Indonesia) 2:[Salinan]
Disalin!
Pengaruh Konstan Michaelis pada Cell Growth. Akhirnya, kita beralih ke
efektif Michaelis konstan (φM atau KM) untuk kompleks terner mengikat ribosom, yang memainkan peran yang unik dalam model kami:
Ini menetapkan skala konsentrasi penuh untuk T-fraksi, sedangkan
jika model berkaitan dengan mengalokasikan fraksi
total proteome. Gambar. 5A menunjukkan tingkat pertumbuhan maksimal sebagai
fungsi dari Michaelis konstan, dengan nilai tetap α dan dengan
α dioptimalkan untuk setiap nilai tertentu φM (merah dan garis biru, masing-masing).
Untuk α tetap, menurunkan Michaelis meningkat konstan
terjemahan kecepatan, dan dengan demikian laju pertumbuhan, dengan menjenuhkan
ribosom dengan kompleks terner. Mengoptimalkan α sehubungan dengan
Michealis konstan yang lebih kecil memungkinkan sel untuk mengurangi investasi
di T-fraksi dan untuk mengalokasikan lebih banyak sumber daya ke ribosom
fraksi (Gbr. 5B), seperti dengan φM kecil kecepatan penerjemahan yang sama
dapat dicapai dengan konsentrasi yang lebih kecil dari kompleks terner.
Dalam kedua kasus, penurunan konstanta Michaelis meningkatkan
tingkat pertumbuhan. Di atas kita berpendapat bahwa nilai
konstanta Michaelis diatur oleh batas fisik, yaitu bahwa
pengikatan kompleks terner ke ribosom tidak bisa lebih cepat
dari difusi-terbatas. Batas ini ditunjukkan pada Gambar. 5 dengan
garis vertikal putus-putus. Ini mengarah ke kunci peran molekul
memainkan crowding dalam pertumbuhan sel. Hubungan antara berkerumun dan sel
pertumbuhan mungkin kompleks (37), seperti peningkatan crowding memperlambat difusi
(38), tetapi juga mengurangi mengikat (39) dan efektif meningkatkan
konsentrasi dengan mengurangi volume diakses. Namun, jika
terjemahan tetap dekat dengan batas difusi, seperti yang kita sarankan
di sini, difusi lambat harus efek dominan crowding
(40, 41).
Interpretasi mekanistik dari fenomenologis Model. Kami telah
disebutkan di atas bahwa teori pertumbuhan kami dengan model empat komponen
dari proteoma mengarah ke interpretasi modifikasi dari lereng
(1 / γ) dari hubungan linier antara konsentrasi ribosom dan
tingkat pertumbuhan (Gambar. 1A). Kita sekarang membahas hal ini secara lebih rinci
dan menunjukkan bahwa itu menyelesaikan kontroversi lama seputar
pendekatan fenomenologis terhadap pertumbuhan bakteri. Dalam fenomenologi
pendekatan, argumen keseimbangan massa disajikan dalam
Pers. 2 dan 3 digunakan untuk mengidentifikasi parameter fenomenologis
Sedang diterjemahkan, harap tunggu..
 
Bahasa lainnya
Dukungan alat penerjemahan: Afrikans, Albania, Amhara, Arab, Armenia, Azerbaijan, Bahasa Indonesia, Basque, Belanda, Belarussia, Bengali, Bosnia, Bulgaria, Burma, Cebuano, Ceko, Chichewa, China, Cina Tradisional, Denmark, Deteksi bahasa, Esperanto, Estonia, Farsi, Finlandia, Frisia, Gaelig, Gaelik Skotlandia, Galisia, Georgia, Gujarati, Hausa, Hawaii, Hindi, Hmong, Ibrani, Igbo, Inggris, Islan, Italia, Jawa, Jepang, Jerman, Kannada, Katala, Kazak, Khmer, Kinyarwanda, Kirghiz, Klingon, Korea, Korsika, Kreol Haiti, Kroat, Kurdi, Laos, Latin, Latvia, Lituania, Luksemburg, Magyar, Makedonia, Malagasi, Malayalam, Malta, Maori, Marathi, Melayu, Mongol, Nepal, Norsk, Odia (Oriya), Pashto, Polandia, Portugis, Prancis, Punjabi, Rumania, Rusia, Samoa, Serb, Sesotho, Shona, Sindhi, Sinhala, Slovakia, Slovenia, Somali, Spanyol, Sunda, Swahili, Swensk, Tagalog, Tajik, Tamil, Tatar, Telugu, Thai, Turki, Turkmen, Ukraina, Urdu, Uyghur, Uzbek, Vietnam, Wales, Xhosa, Yiddi, Yoruba, Yunani, Zulu, Bahasa terjemahan.

Copyright ©2024 I Love Translation. All reserved.

E-mail: