1950; Lutton & Jackson, 1950; Riiner, 1970, 1971a,1971b; Rivarola, Seg terjemahan - 1950; Lutton & Jackson, 1950; Riiner, 1970, 1971a,1971b; Rivarola, Seg Bahasa Indonesia Bagaimana mengatakan

1950; Lutton & Jackson, 1950; Riine

1950; Lutton & Jackson, 1950; Riiner, 1970, 1971a,
1971b; Rivarola, Segura, Anon, & Calvelo, 1987;
Schlichter-Aronhime & Garti, 1988; Thomas III, 1978;
Wiedermann, 1978; Wilton & Wode, 1963). Malkin and
co-workers worked with tristearin and assigned nomenclature to the four forms they detected. However, later
work by other researchers, mainly byLutton (1945,
1950)and Filer and co-workers (Filer et al., 1946) contested Malkin and co-workers assignation of the different polymorphic forms. Over the years, many
researchers have used different terminology for describing the identical polymorphic forms (Chapman, 1955;
Chapman, Akehust, & Wright, 1971; Kellens, Meeussen, & Reynaers, 1992; Lovergren, Gray, & Feuge,
1976; Riiner, 1970; Willie & Lutton, 1966). Presently,
the nomenclature suggested byLutton & Lutton, 1950)
is used extensively. The basis of this nomenclature stems
from short spacing structural data observed in powder
X-ray diffraction of triacylglyceride crystals.
Well-described reviews of the Lutton scheme of
nomenclature has appeared in the literature (Larsson,
1966; Lutton, 1950; Yano, 1998). The main structural
factors used to characterize the different polymorphic
forms are the subcell structure and the layered structure
of a TAG crystal. The subcell structure refers to the
packing mode of the hydrocarbon chains of the triacylglyceride molecules and the layered structure arises
out of the repetitive sequence of the acyl chains which
form a unit lamella along the hydrocarbon axis. The
subcell and layered structures give rise to the short and
long Bragg spacings referred to in X-ray diffraction
studies of fat polymorphism. The long spacings are
observed around 1–15

2-(referring to the position of
the X-ray detector with respect to the direction of incidence of the X-rays), and the short spacings are
observed around the 2-region of 16–25

(Gibon, Durant et al., 1986). The long spacings are dependent on the
chain length and angle of tilt of the component fatty
acids present in the triacylglyceride molecules. The short
spacings are independent of the chain length (Jacobsberg & Ho, 1976). The short spacings are used to characterize the polymorphic forms and the long spacings
are used by some authors to signify polytypism. The
three main polymorphic forms based on observations of
subcell packing are the alpha(a), beta-prime(b
0
) and
beta(b) forms; and are listed here in order of increasing
thermodynamic stability or, in order of decreasing free
energy. It is interesting to note that Ostwald’s law of
intermediate stages governs the formation of polymorphic phases of a substance during crystallization.
This law states that the first crystal formed during crystallization possesses the highest free energy with the
least thermodynamic stability. The polymorphic forms
then go through successive modifications until the most
stable stage is reached (Albanese, 1985). Thealphaform
refers to a hexagonal subcell and demonstrates a Bragg
short spacing at 0.42 nm, thebeta-primeform refers to a
orthorhombic perpendicular subcell, with Bragg short
spacings of 0.42–0.43 and 0.37–0.40 nm, and the beta
form refers to a triclinic parallel subcell with a Bragg
short spacing of 0.46 nm. Fig. 8(a), (b), and (c)shows
diagrammatic representations of the various subcell and
layered structures.
In addition to X-ray diffraction, a number of other
techniques are employed in the identification of the different polymorphic forms. Vibrational spectroscopy has
been used as early as the 1950s to determine fat polymorphism (Amey & Chapman, 1984; Chapman, 1960a,
1964; Freeman, 1968; O’Connor, DuPre, & Feuge,
1955; Yano, 1998; Yano, Kaneko, Kobayashi, Kodali,
Small, & Sata, 1997a; Yano, Kaneko, Kobayashi, &
Sata, 1997b). Nuclear magnetic resonance (NMR) measurements have also been used since at least the 1960s to
study molecular mobility in polymorphs (Arishima,
Sugimoto, Kiwata, Mori, & Sato, 1996; Boceik, Ablett,
& Norton, 1985; Calaghan & Jolly, 1977; Chapman,
1960a, 1960b; Eads, Blaurock, Bryant, Roy, & Croasman, 1992; Hagemann & Rothfus, 1983; Norton, LeeTuffnel, Ablett, & Bociek, 1985). Atomic force microscopy has also been used as a tool to study the structure
of TAGs (Birker & Blonk, 1993).
The polymorphic phase of the fat portion of a shortening or margarine system affects the macroscopic physical properties of the system tremendously. The melting
behavior of the fat is determined by the polymorph
present. The melting points of beta and beta-prime
polymorphs of some common TAGs are compared in
Table 7(deMan & deMan, 2001). In the case of tristearin, the melting point of theapolymorph is 53.5

C,
whilst that of thebetaform is 73.0

C.
The shape and sizes of the crystals and crystal aggregates (microstructural elements) found in a shortening
or margarine network is affected by the polymorphic
form of the crystals to a different extent in different fats
(Berger, Jewel, & Pollitt, 1979; Hoerr, 1960; Hoerr &
Waugh, 1955; Kellens et al., 1992). The level of graininess of the shortening product may therefore be attributed in part to the polymorphic form, however, the
same polymorph may have widely different microstructures (Kellens et al., 1992), leading to coarser
aggregates of crystals and therefore increased graininess. The beta-prime polymorph is usually the most
functional in fat products, due to its small crystal size
(1mm) and thin, needle shaped morphology. The
shapes and sizes of crystals and crystal aggregates
(microstructural elements) greatly affects the macroscopic elastic constant and hardness of the fat network
and therefore the shortening product (Cornily &
leMeste, 1985; Marangoni, 2000; Marangoni & Narine,
2001; Narine, 2000; Narine & Marangoni, 1999a, 1999b,
1999c, 1999d, 1999e, 1999f, 2000, 2002a, 2002b, submitted for publication)
1026 B.S. Ghotra et al. / Food Research International 35 (2002) 1015–1048
Fig. 8. Typical subcell and layered structures.
B.S. Ghotra et al. / Food Research International 35 (2002) 1015–
0/5000
Dari: -
Ke: -
Hasil (Bahasa Indonesia) 1: [Salinan]
Disalin!
1950; Lutton & Jackson, 1950; Riiner, 1970, 1971a,
1971b; Rivarola, Segura, Anon, & Calvelo, 1987;
Schlichter-Aronhime & Garti, 1988; Thomas III, 1978;
Wiedermann, 1978; Wilton & Wode, 1963). Malkin and
co-workers worked with tristearin and assigned nomenclature to the four forms they detected. However, later
work by other researchers, mainly byLutton (1945,
1950)and Filer and co-workers (Filer et al., 1946) contested Malkin and co-workers assignation of the different polymorphic forms. Over the years, many
researchers have used different terminology for describing the identical polymorphic forms (Chapman, 1955;
Chapman, Akehust, & Wright, 1971; Kellens, Meeussen, & Reynaers, 1992; Lovergren, Gray, & Feuge,
1976; Riiner, 1970; Willie & Lutton, 1966). Presently,
the nomenclature suggested byLutton & Lutton, 1950)
is used extensively. The basis of this nomenclature stems
from short spacing structural data observed in powder
X-ray diffraction of triacylglyceride crystals.
Well-described reviews of the Lutton scheme of
nomenclature has appeared in the literature (Larsson,
1966; Lutton, 1950; Yano, 1998). The main structural
factors used to characterize the different polymorphic
forms are the subcell structure and the layered structure
of a TAG crystal. The subcell structure refers to the
packing mode of the hydrocarbon chains of the triacylglyceride molecules and the layered structure arises
out of the repetitive sequence of the acyl chains which
form a unit lamella along the hydrocarbon axis. The
subcell and layered structures give rise to the short and
long Bragg spacings referred to in X-ray diffraction
studies of fat polymorphism. The long spacings are
observed around 1–15

2-(referring to the position of
the X-ray detector with respect to the direction of incidence of the X-rays), and the short spacings are
observed around the 2-region of 16–25

(Gibon, Durant et al., 1986). The long spacings are dependent on the
chain length and angle of tilt of the component fatty
acids present in the triacylglyceride molecules. The short
spacings are independent of the chain length (Jacobsberg & Ho, 1976). The short spacings are used to characterize the polymorphic forms and the long spacings
are used by some authors to signify polytypism. The
three main polymorphic forms based on observations of
subcell packing are the alpha(a), beta-prime(b
0
) and
beta(b) forms; and are listed here in order of increasing
thermodynamic stability or, in order of decreasing free
energy. It is interesting to note that Ostwald’s law of
intermediate stages governs the formation of polymorphic phases of a substance during crystallization.
This law states that the first crystal formed during crystallization possesses the highest free energy with the
least thermodynamic stability. The polymorphic forms
then go through successive modifications until the most
stable stage is reached (Albanese, 1985). Thealphaform
refers to a hexagonal subcell and demonstrates a Bragg
short spacing at 0.42 nm, thebeta-primeform refers to a
orthorhombic perpendicular subcell, with Bragg short
spacings of 0.42–0.43 and 0.37–0.40 nm, and the beta
form refers to a triclinic parallel subcell with a Bragg
short spacing of 0.46 nm. Fig. 8(a), (b), and (c)shows
diagrammatic representations of the various subcell and
layered structures.
In addition to X-ray diffraction, a number of other
techniques are employed in the identification of the different polymorphic forms. Vibrational spectroscopy has
been used as early as the 1950s to determine fat polymorphism (Amey & Chapman, 1984; Chapman, 1960a,
1964; Freeman, 1968; O’Connor, DuPre, & Feuge,
1955; Yano, 1998; Yano, Kaneko, Kobayashi, Kodali,
Small, & Sata, 1997a; Yano, Kaneko, Kobayashi, &
Sata, 1997b). Nuclear magnetic resonance (NMR) measurements have also been used since at least the 1960s to
study molecular mobility in polymorphs (Arishima,
Sugimoto, Kiwata, Mori, & Sato, 1996; Boceik, Ablett,
& Norton, 1985; Calaghan & Jolly, 1977; Chapman,
1960a, 1960b; Eads, Blaurock, Bryant, Roy, & Croasman, 1992; Hagemann & Rothfus, 1983; Norton, LeeTuffnel, Ablett, & Bociek, 1985). Atomic force microscopy has also been used as a tool to study the structure
of TAGs (Birker & Blonk, 1993).
The polymorphic phase of the fat portion of a shortening or margarine system affects the macroscopic physical properties of the system tremendously. The melting
behavior of the fat is determined by the polymorph
present. The melting points of beta and beta-prime
polymorphs of some common TAGs are compared in
Table 7(deMan & deMan, 2001). In the case of tristearin, the melting point of theapolymorph is 53.5

C,
whilst that of thebetaform is 73.0

C.
The shape and sizes of the crystals and crystal aggregates (microstructural elements) found in a shortening
or margarine network is affected by the polymorphic
form of the crystals to a different extent in different fats
(Berger, Jewel, & Pollitt, 1979; Hoerr, 1960; Hoerr &
Waugh, 1955; Kellens et al., 1992). The level of graininess of the shortening product may therefore be attributed in part to the polymorphic form, however, the
same polymorph may have widely different microstructures (Kellens et al., 1992), leading to coarser
aggregates of crystals and therefore increased graininess. The beta-prime polymorph is usually the most
functional in fat products, due to its small crystal size
(1mm) and thin, needle shaped morphology. The
shapes and sizes of crystals and crystal aggregates
(microstructural elements) greatly affects the macroscopic elastic constant and hardness of the fat network
and therefore the shortening product (Cornily &
leMeste, 1985; Marangoni, 2000; Marangoni & Narine,
2001; Narine, 2000; Narine & Marangoni, 1999a, 1999b,
1999c, 1999d, 1999e, 1999f, 2000, 2002a, 2002b, submitted for publication)
1026 B.S. Ghotra et al. / Food Research International 35 (2002) 1015–1048
Fig. 8. Typical subcell and layered structures.
B.S. Ghotra et al. / Food Research International 35 (2002) 1015–
Sedang diterjemahkan, harap tunggu..
Hasil (Bahasa Indonesia) 2:[Salinan]
Disalin!
1950; Lutton & Jackson, 1950; Riiner, 1970, 1971a,
1971b; Rivarola, Segura, Anon, & Calvelo, 1987;
Schlichter-Aronhime & Garti, 1988; Thomas III, 1978;
Wiedermann, 1978; Wilton & Wode, 1963). Malkin dan
rekan kerja bekerja dengan tristearin dan ditugaskan nomenklatur ke empat bentuk mereka terdeteksi. Namun, kemudian
bekerja oleh peneliti lain, terutama byLutton (1945,
1950) dan Filer dan rekan kerja (Filer et al., 1946) diperebutkan Malkin dan rekan kerja penugasan dari bentuk polimorfik yang berbeda. Selama bertahun-tahun, banyak
peneliti telah menggunakan terminologi yang berbeda untuk menggambarkan bentuk polimorfik identik (Chapman, 1955;
Chapman, Akehust, & Wright, 1971; Kellens, Meeussen, & Reynaers, 1992; Lovergren, Gray, & Feuge,
1976; Riiner, 1970; Willie & Lutton, 1966). Saat ini,
nomenklatur menyarankan byLutton & Lutton, 1950)
digunakan secara luas. Dasar nomenklatur ini berasal
dari data struktural jarak pendek diamati dalam bentuk bubuk
. difraksi sinar-X dari kristal triacylglyceride
ulasan Terletak dijelaskan dari skema Lutton dari
nomenklatur telah muncul dalam literatur (Larsson,
1966; Lutton, 1950; Yano, 1998) . Struktural utama
faktor yang digunakan untuk mengkarakterisasi polimorfik yang berbeda
bentuk adalah struktur subcell dan struktur berlapis
kristal TAG. Struktur subcell mengacu pada
modus kemasan rantai hidrokarbon dari molekul triacylglyceride dan struktur berlapis muncul
dari urutan berulang dari rantai asil yang
membentuk lamella satuan sepanjang sumbu hidrokarbon. The
subcell dan struktur berlapis menimbulkan pendek dan
jarak Bragg panjang dimaksud dalam difraksi sinar-X
studi polimorfisme lemak. The jarak panjang
diamati sekitar 1-15
?
2 -? (mengacu pada posisi
detektor X-ray terhadap arah kejadian sinar-X), dan jarak pendek
? diamati sekitar 2- wilayah dari 16-25
?
(gibon, Durant dkk., 1986). The jarak panjang tergantung pada
panjang rantai dan sudut kemiringan dari lemak komponen
asam hadir dalam molekul triacylglyceride. Pendek
jarak independen dari panjang rantai (Jacobsberg & Ho, 1976). The jarak pendek digunakan untuk mengkarakterisasi bentuk polimorfik dan jarak panjang
yang digunakan oleh beberapa penulis untuk menandakan polytypism. The
tiga bentuk polimorfik utama berdasarkan pengamatan
subcell kemasan adalah alpha (a), beta-prime (b
0
) dan
beta (b) bentuk; dan terdaftar di sini dalam rangka meningkatkan
stabilitas termodinamika atau, dalam rangka penurunan gratis
energi. Sangat menarik untuk dicatat bahwa hukum Ostwald dari
tahap-tahap peralihan mengatur pembentukan fase polimorfik suatu zat selama kristalisasi.
Hukum ini menyatakan bahwa kristal pertama yang terbentuk selama kristalisasi memiliki energi bebas tertinggi dengan
stabilitas termodinamika sedikit. Bentuk-bentuk polimorfik
kemudian pergi melalui modifikasi berturut-turut sampai paling
tahap stabil tercapai (Albanese, 1985). Thealphaform
mengacu pada subcell heksagonal dan menunjukkan Bragg
jarak pendek di 0.42 nm, thebeta-primeform mengacu pada
subcell tegak lurus ortorombik, dengan Bragg pendek
jarak dari 0,42-0,43 dan 0,37-0,40 nm, dan beta
bentuk mengacu pada subcell paralel triklinik dengan Bragg
jarak pendek dari 0.46 nm. Gambar. 8 (a), (b), dan (c) menunjukkan
representasi diagram dari berbagai subcell dan
struktur berlapis.
Selain difraksi sinar-X, sejumlah lainnya
teknik yang digunakan dalam identifikasi bentuk polimorfik yang berbeda. Spektroskopi vibrasi telah
digunakan sejak tahun 1950-an untuk menentukan polimorfisme lemak (Amey & Chapman, 1984; Chapman, 1960a,
1964; Freeman, 1968; O'Connor, DuPre, & Feuge,
1955; Yano, 1998; Yano, Kaneko, Kobayashi, Kodali,
Kecil, & Sata, 1997a; Yano, Kaneko, Kobayashi, &
Sata, 1997b). Resonansi magnetik nuklir (NMR) pengukuran juga telah digunakan setidaknya sejak tahun 1960 untuk
mempelajari mobilitas molekul dalam polimorf (Arishima,
Sugimoto, Kiwata, Mori, & Sato, 1996; Boceik, Ablett,
& Norton, 1985; Calaghan & Jolly, 1977 ; Chapman,
1960a, 1960b; Eads, Blaurock, Bryant, Roy, & Croasman, 1992; Hagemann & Rothfus, 1983; Norton, LeeTuffnel, Ablett, & Bociek, 1985). Mikroskop kekuatan atom juga telah digunakan sebagai alat untuk mempelajari struktur
dari TAG (Birker & Blonk, 1993).
Fase polimorfik dari bagian lemak dari pemendekan atau margarin sistem mempengaruhi sifat fisik makroskopik dari sistem sangat. Mencairnya
perilaku lemak ditentukan oleh polimorf
ini. Titik lebur beta dan beta-prime
polimorf dari beberapa TAG umum dibandingkan dalam
Tabel 7 (Deman & Deman, 2001). Dalam kasus tristearin, titik leleh theapolymorph adalah 53,5
?
C,
sementara itu dari thebetaform adalah 73.0
?
C.
Bentuk dan ukuran kristal dan kristal agregat (unsur mikro) ditemukan dalam mentega
atau margarin jaringan dipengaruhi oleh polimorfik
bentuk kristal sampai batas yang berbeda dalam lemak yang berbeda
(Berger, Jewel, & Pollitt, 1979; Hoerr, 1960; Hoerr &
Waugh, 1955;. Kellens et al, 1992). Tingkat graininess produk pemendekan karenanya dapat disebabkan sebagian bentuk polimorfik, bagaimanapun,
polimorf yang sama mungkin memiliki mikro yang sangat berbeda (Kellens et al., 1992), yang mengarah ke kasar
agregat kristal dan karena itu meningkatkan graininess. The polimorf beta-prime biasanya yang paling
fungsional dalam produk lemak, karena ukurannya kecil kristal
(? 1mm) dan tipis, jarum berbentuk morfologi. Para
bentuk dan ukuran kristal dan kristal agregat
(unsur mikrostruktur) sangat mempengaruhi konstanta makroskopik elastis dan kekerasan jaringan lemak
dan karena itu produk shortening (Cornily &
leMeste, 1985; Marangoni, 2000; Marangoni & Narine,
2001; Narine, 2000 ; Narine & Marangoni, 1999a, 1999b,
1999c, 1999d, 1999e, 1999f, 2000, 2002a, 2002b, dikirimkan untuk publikasi)
1026 BS Ghotra et al. / Food Research International 35 (2002) 1015-1048
Gambar. 8. Khas subcell dan berlapis struktur.
BS Ghotra et al. / Food Research International 35 (2002) 1015-
Sedang diterjemahkan, harap tunggu..
 
Bahasa lainnya
Dukungan alat penerjemahan: Afrikans, Albania, Amhara, Arab, Armenia, Azerbaijan, Bahasa Indonesia, Basque, Belanda, Belarussia, Bengali, Bosnia, Bulgaria, Burma, Cebuano, Ceko, Chichewa, China, Cina Tradisional, Denmark, Deteksi bahasa, Esperanto, Estonia, Farsi, Finlandia, Frisia, Gaelig, Gaelik Skotlandia, Galisia, Georgia, Gujarati, Hausa, Hawaii, Hindi, Hmong, Ibrani, Igbo, Inggris, Islan, Italia, Jawa, Jepang, Jerman, Kannada, Katala, Kazak, Khmer, Kinyarwanda, Kirghiz, Klingon, Korea, Korsika, Kreol Haiti, Kroat, Kurdi, Laos, Latin, Latvia, Lituania, Luksemburg, Magyar, Makedonia, Malagasi, Malayalam, Malta, Maori, Marathi, Melayu, Mongol, Nepal, Norsk, Odia (Oriya), Pashto, Polandia, Portugis, Prancis, Punjabi, Rumania, Rusia, Samoa, Serb, Sesotho, Shona, Sindhi, Sinhala, Slovakia, Slovenia, Somali, Spanyol, Sunda, Swahili, Swensk, Tagalog, Tajik, Tamil, Tatar, Telugu, Thai, Turki, Turkmen, Ukraina, Urdu, Uyghur, Uzbek, Vietnam, Wales, Xhosa, Yiddi, Yoruba, Yunani, Zulu, Bahasa terjemahan.

Copyright ©2025 I Love Translation. All reserved.

E-mail: