ponentialgrowth, but with a reduced growth rate (42). Studyingthe ribo terjemahan - ponentialgrowth, but with a reduced growth rate (42). Studyingthe ribo Bahasa Indonesia Bagaimana mengatakan

ponentialgrowth, but with a reduced

ponential
growth, but with a reduced growth rate (42). Studying
the ribosome content and translation speed of these cells should
provide valuable insight into the link between crowding and cell
growth. Specifically, our study suggests that the slow diffusion of
ternary complexes is an important contribution to the slowdown
of growth. This could be directly probed by following the diffusion
of ternary complexes in cells under osmotic challenge.
Methods
Growth Theory with a Four-Component Proteome Partitioning Model. The
growth theory with the four-component model of the proteome is defined by
Eqs. 3–5, 7, and 8. Solving these equations defines the growth rate (λ), the
proteome fractions (ϕRb, ϕT, ϕP), and the translation speed (γ) as functions of
the parameters of translation (γmax, φM) and the parameter ν, which characterizes
the nutrient quality of the medium. Inverting the dependence of λ
on ν or γmax leads to the growth-rate dependence of the quantities for
nutrient-limited and translation-limited growth, respectively. A mathematical
summary of the theory with a three-component and a four-component
model of the proteome is given in SI Text.
Conversion of Concentrations and Proteome Fractions. Proteome fractions (ϕ)
and concentrations (c) are converted through ϕ=σc. The factor σ is obtained as
σ =σ0
volume
mass
mass
total protein
Naa ≈3:8 × 10−7μM−1 ×Naa; [10]
where σ0 = 600 μm−3/μM converts numbers of molecules per volume into
molar concentrations, Naa is the number of amino acids in the protein of
interest, and the remaining two factors convert protein mass units to volume
(43). The latter two factors [volume/mass ≈ 0.32 μm3/(OD460/109 cells), protein/
mass ≈ 5 × 1017 amino acids/OD460] are approximately independent of the
growth rate (2, 44). Specifically, for EF-Tu, Naa is 394 (20). The concentration
of ternary complexes as seen by the ribosome is, however, not the total
concentration of EF-Tu, but the concentration of a specific ternary complex
(a specific tRNA); i.e., the total concentration of EF-Tu is nt times the concentration
seen by the ribosome, where nt ≈ 30 is the number of different
ternary complexes. As the concentrations of different tRNA species vary
wildly, we estimated an effective number of different tRNA species, nt ≈
30, excluding the minor tRNAs species for amino acids with more than one
tRNA. To obtain an overall estimate of the tRNA-related protein mass, the
proteome fraction of EF-Tu is multiplied by a factor 1.6 to account for the
tRNA synthetases, which are present in E. coli at a constant ratio to EF-Tu
(15). As only 10 of the 21 tRNA synthetases have been measured (with a mass
ratio to EF-Tu of 0.3), their total proteome fraction has been doubled in this
estimate.
ACKNOWLEDGMENTS. The authors thank Peter Geiduschek for comments
on the manuscript. This work was supported by the National Institutes of
Health through Grant R01-GM095903 (to T.H.), by the National Science Foundation
through the Center for Theoretical Biological Physics (PHY0822283),
and by a Natural Sciences and Engineering Research Council of Canada Discovery
grant (to M.S.).
0/5000
Dari: -
Ke: -
Hasil (Bahasa Indonesia) 1: [Salinan]
Disalin!
ponentialgrowth, but with a reduced growth rate (42). Studyingthe ribosome content and translation speed of these cells shouldprovide valuable insight into the link between crowding and cellgrowth. Specifically, our study suggests that the slow diffusion ofternary complexes is an important contribution to the slowdownof growth. This could be directly probed by following the diffusionof ternary complexes in cells under osmotic challenge.MethodsGrowth Theory with a Four-Component Proteome Partitioning Model. Thegrowth theory with the four-component model of the proteome is defined byEqs. 3–5, 7, and 8. Solving these equations defines the growth rate (λ), theproteome fractions (ϕRb, ϕT, ϕP), and the translation speed (γ) as functions ofthe parameters of translation (γmax, φM) and the parameter ν, which characterizesthe nutrient quality of the medium. Inverting the dependence of λon ν or γmax leads to the growth-rate dependence of the quantities fornutrient-limited and translation-limited growth, respectively. A mathematicalsummary of the theory with a three-component and a four-componentmodel of the proteome is given in SI Text.Conversion of Concentrations and Proteome Fractions. Proteome fractions (ϕ)and concentrations (c) are converted through ϕ=σc. The factor σ is obtained asσ =σ0volumemassmasstotal proteinNaa ≈3:8 × 10−7μM−1 ×Naa; [10]where σ0 = 600 μm−3/μM converts numbers of molecules per volume intomolar concentrations, Naa is the number of amino acids in the protein ofinterest, and the remaining two factors convert protein mass units to volume(43). The latter two factors [volume/mass ≈ 0.32 μm3/(OD460/109 cells), protein/mass ≈ 5 × 1017 amino acids/OD460] are approximately independent of thegrowth rate (2, 44). Specifically, for EF-Tu, Naa is 394 (20). The concentrationof ternary complexes as seen by the ribosome is, however, not the totalconcentration of EF-Tu, but the concentration of a specific ternary complex(a specific tRNA); i.e., the total concentration of EF-Tu is nt times the concentrationseen by the ribosome, where nt ≈ 30 is the number of differentternary complexes. As the concentrations of different tRNA species varywildly, we estimated an effective number of different tRNA species, nt ≈30, excluding the minor tRNAs species for amino acids with more than onetRNA. To obtain an overall estimate of the tRNA-related protein mass, theproteome fraction of EF-Tu is multiplied by a factor 1.6 to account for thetRNA synthetases, which are present in E. coli at a constant ratio to EF-Tu(15). As only 10 of the 21 tRNA synthetases have been measured (with a massratio to EF-Tu of 0.3), their total proteome fraction has been doubled in thisestimate.ACKNOWLEDGMENTS. The authors thank Peter Geiduschek for commentson the manuscript. This work was supported by the National Institutes ofHealth through Grant R01-GM095903 (to T.H.), by the National Science Foundation
through the Center for Theoretical Biological Physics (PHY0822283),
and by a Natural Sciences and Engineering Research Council of Canada Discovery
grant (to M.S.).
Sedang diterjemahkan, harap tunggu..
Hasil (Bahasa Indonesia) 2:[Salinan]
Disalin!
ponential
pertumbuhan, tetapi dengan tingkat pertumbuhan berkurang (42). Mempelajari
isi ribosom dan kecepatan translasi sel-sel ini harus
memberikan pemahaman yang berharga tentang hubungan antara berkerumun dan sel
pertumbuhan. Secara khusus, penelitian kami menunjukkan bahwa difusi lambat
kompleks terner merupakan kontribusi penting untuk perlambatan
pertumbuhan. Hal ini dapat langsung diperiksa dengan mengikuti difusi
kompleks terner dalam sel di bawah tantangan osmotik.
Metode
Pertumbuhan Teori dengan Empat Komponen Proteome Partisi Model. The
teori pertumbuhan dengan model empat komponen proteoma didefinisikan oleh
Pers. 3-5, 7, dan 8 Penyelesaian persamaan ini mendefinisikan tingkat pertumbuhan (λ), para
fraksi proteome (φRb, φT, φP), dan kecepatan translasi (γ) sebagai fungsi dari
parameter penerjemahan (γmax, φM) dan ν parameter, yang mencirikan
kualitas nutrisi medium. Pembalikan ketergantungan λ
pada ν atau γmax mengarah ke ketergantungan pertumbuhan tingkat jumlah untuk
pertumbuhan gizi terbatas dan terjemahan terbatas, masing-masing. Sebuah matematika
ringkasan teori dengan tiga komponen dan empat komponen
model proteoma diberikan dalam SI Teks.
Konversi Konsentrasi dan Proteome pecahan. Fraksi Proteome (φ)
dan konsentrasi (c) dikonversi melalui φ = σc. Faktor σ diperoleh sebagai
σ = σ0
Volume
massa
massa
total protein
Naa ≈3: 8 × 10-7μM-1 × Naa; [10]
di mana σ0 = 600 m-3 / pM bertobat jumlah molekul per volume ke
konsentrasi molar, Naa adalah jumlah asam amino dalam protein dari
bunga, dan dua faktor yang tersisa mengkonversi satuan massa protein volume
(43). Dua yang terakhir faktor [volume / massa ≈ 0.32 μm3 / (OD460 / 109 sel), protein /
massa ≈ 5 × 1017 asam amino / OD460] sekitar independen dari
tingkat pertumbuhan (2, 44). Secara khusus, untuk EF-Tu, Naa adalah 394 (20). Konsentrasi
kompleks terner seperti yang terlihat oleh ribosom adalah, bagaimanapun, tidak total
konsentrasi EF-Tu, tetapi konsentrasi kompleks terner tertentu
(tRNA tertentu); yaitu, konsentrasi total EF-Tu adalah nt kali konsentrasi
dilihat oleh ribosom, di mana nt ≈ 30 adalah jumlah yang berbeda
kompleks terner. Sebagai konsentrasi spesies tRNA yang berbeda bervariasi
liar, kami memperkirakan jumlah efektif spesies tRNA yang berbeda, nt ≈
30, tidak termasuk spesies tRNA kecil untuk asam amino dengan lebih dari satu
tRNA. Untuk mendapatkan perkiraan keseluruhan massa protein tRNA-terkait,
fraksi proteome dari EF-Tu dikalikan dengan faktor 1,6 untuk menjelaskan
sintetase tRNA, yang hadir dalam E. coli pada rasio konstan untuk EF-Tu
(15 ). Karena hanya 10 dari 21 tRNA sintetase telah diukur (dengan massa
rasio EF-Tu 0,3), fraksi jumlah proteoma mereka telah dua kali lipat dalam
perkiraan.
UCAPAN TERIMA KASIH. Para penulis berterima kasih kepada Peter Geiduschek untuk komentar
pada naskah. Karya ini didukung oleh National Institutes of
Health melalui Hibah R01-GM095903 (untuk TH), oleh National Science Foundation
melalui Pusat Teoritis Biologi Fisika (PHY0822283),
dan oleh Ilmu Pengetahuan Alam dan Engineering Research Council of Canada Penemuan
hibah ( ke MS).
Sedang diterjemahkan, harap tunggu..
 
Bahasa lainnya
Dukungan alat penerjemahan: Afrikans, Albania, Amhara, Arab, Armenia, Azerbaijan, Bahasa Indonesia, Basque, Belanda, Belarussia, Bengali, Bosnia, Bulgaria, Burma, Cebuano, Ceko, Chichewa, China, Cina Tradisional, Denmark, Deteksi bahasa, Esperanto, Estonia, Farsi, Finlandia, Frisia, Gaelig, Gaelik Skotlandia, Galisia, Georgia, Gujarati, Hausa, Hawaii, Hindi, Hmong, Ibrani, Igbo, Inggris, Islan, Italia, Jawa, Jepang, Jerman, Kannada, Katala, Kazak, Khmer, Kinyarwanda, Kirghiz, Klingon, Korea, Korsika, Kreol Haiti, Kroat, Kurdi, Laos, Latin, Latvia, Lituania, Luksemburg, Magyar, Makedonia, Malagasi, Malayalam, Malta, Maori, Marathi, Melayu, Mongol, Nepal, Norsk, Odia (Oriya), Pashto, Polandia, Portugis, Prancis, Punjabi, Rumania, Rusia, Samoa, Serb, Sesotho, Shona, Sindhi, Sinhala, Slovakia, Slovenia, Somali, Spanyol, Sunda, Swahili, Swensk, Tagalog, Tajik, Tamil, Tatar, Telugu, Thai, Turki, Turkmen, Ukraina, Urdu, Uyghur, Uzbek, Vietnam, Wales, Xhosa, Yiddi, Yoruba, Yunani, Zulu, Bahasa terjemahan.

Copyright ©2024 I Love Translation. All reserved.

E-mail: