Soil erosion is the dominant cause of soil degradation at a global sca terjemahan - Soil erosion is the dominant cause of soil degradation at a global sca Bahasa Indonesia Bagaimana mengatakan

Soil erosion is the dominant cause

Soil erosion is the dominant cause of soil degradation at a global scale. This is accounted for between 70 and 90% of total soil degradation. The adverse influences of soil erosion as a cause for soil degradation have long been recognized as a severe problem for sustainability of economic development. This is because a large portion of fertile soil is lost annually which negatively influences the goal of achieving food security. However, estimation of soil erosion rate is often difficult due to a complex interplay of many factors, besides the differences in scale and methodological components of the studies. In a country like Ethiopia, with an agriculture-based economy for more than 85% of population, having reliable soil loss data is indeed a matter of great concerns and not a matter of choice.
Regardless of the great deal of management practices undertaken aggressively in Ethiopia catchments by the government in the past 1-2 decades to reduce soil degradation, soil erosion by water is still recognized to be a severe threat to the national economy. This indicated that the existing literature on the rate of soil erosion in Ethiopia calls for a wise decision supporting tools in order to reduce the degradation level. For instance, past studies on soil erosion in the catchments of Tigray region (northern Ethiopia) showed variability ranging from 7 t ha−1 y−1 to more than 24 t ha−1 y−1 and 80 t ha−1 y−1. According to the report by FAO, erosion rate is estimated up to 130 t ha−1 y−1 from cropland and 35 t ha−1 y−1 averaged over all land use types in the highlands of Ethiopia. Such discrepancies in the rates of erosion by the studies mainly attributed to changes and differences in land use, management practices, and methods employed while developing input data and their respective scale of analysis. Predominantly, previous erosion related input data were developed from simple point observation such as runoff plot, and data were interpolated through conventional method. Such method poses many limitations in terms of cost, representation, and reliability of the resulting data. Recently, to reduce such limitations geostatistic techniques that interpolate data for an entire catchment from appropriately sampled point measurements are readily available.
Mapping through conventional methods demands an intensive data collection, which is often difficult to practice in complex terrains like in northern Ethiopia. The Geographic Information System (GIS) techniques can provide easy and time effective tools to map and analyze erosion input data of hydrophysical parameters. These techniques coupled with the concept of catchment priority can help in identifying areas where treatment plans should be first located. Many studies (e.g., Sharad et al.; Sanware et al.) revealed that GIS techniques can have a great role in characterization and prioritization of subcatchments. The catchment level assessment and mapping of hydrophysical resources can support the identification of constraints, ecological problems, and adoption of effective management practices that sustain land and water resources using integrated catchment management strategies. In addition, the availability of hydrophysical parameters in a GIS map format can be used readily for erosion model running in order to understand spatial distribution of ecological problems such as soil erosion.
In many environmental studies, data inputs are measured at single points in space, even though classical statistics assume that measured data are independent and thus are not sufficient to analyze spatially dependent variables. However, information is required for the entire catchment space, which necessitates methods that interpolate data to estimate the mean value within an area. Geostatistics provides the basis for interpolation spatial variability of hydrophysical erosion model input parameters that affect runoff and soil loss.
To estimate soil erosion and suggest appropriate management plans, many erosion models such as Universal Soil Loss Equation (USLE), Morgan-Morgan-Finney (MMF), Water Erosion Prediction Project (WEPP), Soil and Water Assessment Tool (SWAT), European Soil Erosion Model (EUROSEM), and Annualized Agricultural Non-Point Source (AnnAGNPS) have been developed and used data inputs generated through GIS. Among these models, the USLE has remained the most practical method of estimating soil erosion potential for more than 40 years, despite the fact that it has many limitations for application at catchment-scale. On the other-hand, process-based erosion models developed afterward have limitations in applicability due to intensive data and computation requirements. The application of process-based models is not always an easy task since these require large amounts of information which is often not available, mainly in data scarce developing regions. The MMF model was selected to estimate annual soil loss, since this model endeavours to retain the simplicity of USLE and also encompasses the understanding of erosion processes into water and sediment phases. Meaning, the MMF model was selected to be applied in this study because of its simplicity and flexibility as compared to the physical-base models and has a stronger physical base than USLE. In addition, since the MMF model is a physically based-empirical model (mix model), it needs less data than most of the other erosion predictive models.
Understanding the hydrophysical parameters that can influence erosion rate in a catchment is complex due to the combined nature of the natural processes and man-made features. Therefore, research to obtain quantitative description of hydrology/erosion in a catchment must consider these spatial heterogeneities. In order to tackle against hydrological related problems (runoff, sedimentation), accurate representation or locating the spatial distribution and variability of the influencing parameters using GIS is necessary. This study was aimed to derive and assess the spatial distribution of hydrophysical parameters developed using GIS technique and apply them in the MMF model for estimating the spatial variability of soil loss in the Mai-Negus catchment, northern Ethiopia. The spatial map can be used for prioritizing areas within the catchment that require immediate management measures on the basis of the severity of runoff/soil loss.
0/5000
Dari: -
Ke: -
Hasil (Bahasa Indonesia) 1: [Salinan]
Disalin!
Erosi tanah adalah penyebab dominan degradasi tanah pada skala global. Ini diperhitungkan antara 70 dan 90% dari total tanah degradasi. Pengaruh merugikan erosi tanah sebagai penyebab penurunan tanah telah lama diakui sebagai masalah berat untuk keberlanjutan pembangunan ekonomi. Hal ini karena sebagian besar tanah subur hilang setiap tahunnya yang negatif mempengaruhi tujuan mencapai ketahanan pangan. Namun, perkiraan tingkat erosi tanah ini sering sulit karena interaksi yang kompleks dari banyak faktor, selain perbedaan dalam skala dan metodologis komponen dari studi. Di negara seperti Etiopia, dengan ekonomi berbasis pertanian lebih dari 85% penduduk, memiliki tanah dapat diandalkan kehilangan data adalah memang masalah keprihatinan besar dan bukan masalah pilihan.
terlepas dari banyak praktek-praktek manajemen yang dilakukan secara agresif di Ethiopia pemasarannya oleh pemerintah dalam 1-2 dekade untuk mengurangi degradasi tanah, erosi oleh air masih diakui menjadi ancaman parah perekonomian nasional. Ini menunjukkan bahwa literatur yang ada pada tingkat erosi tanah di Ethiopia panggilan untuk sebuah keputusan yang bijaksana alat pendukung untuk mengurangi tingkat degradasi. Misalnya, masa lalu studi tentang erosi tanah dalam tangkapan dari region Tigray (Utara Ethiopia) menunjukkan variabilitas mulai dari 7 t ha−1 y−1 untuk lebih dari 24 t ha−1 y−1 dan 80 t ha−1 y−1. Menurut laporan oleh FAO, tingkat erosi diperkirakan hingga 130 t ha−1 y−1 dari makan cropland dan 35 t ha−1 y−1 rata-rata atas semua tanah menggunakan jenis di dataran tinggi Etiopia. Seperti perbedaan dalam tingkat erosi oleh studi yang terutama disebabkan karena perubahan dan perbedaan dalam tanah digunakan, pengelolaan, dan metode yang digunakan ketika mengembangkan input data dan skala analisis mereka masing-masing. Dominan, erosi sebelumnya terkait input data dikembangkan dari pengamatan sederhana titik seperti plot limpasan, dan data adalah sebuah sisipan melalui metode konvensional. Metode tersebut menimbulkan banyak keterbatasan dalam hal biaya, representasi, dan keandalan data yang dihasilkan. Baru-baru ini, untuk mengurangi teknik seperti keterbatasan geostatistic yang melakukan interpolasi data untuk seluruh tangkapan dari titik tepat sampel pengukuran tersedia.
Pemetaan melalui metode konvensional tuntutan pengumpulan data yang intensif, itulah sering sulit untuk berlatih di Medan yang kompleks seperti di utara Ethiopia. Teknik sistem informasi geografis (GIS) yang dapat menyediakan mudah dan waktu alat yang efektif untuk memetakan dan menganalisis data input erosi parameter hydrophysical. Teknik-teknik yang digabungkan dengan konsep tangkapan prioritas dapat membantu dalam mengidentifikasi daerah mana rencana pengobatan harus pertama terletak. Banyak studi (e.g., Sharad et al.; Sanware et al.) mengungkapkan bahwa teknik GIS dapat memiliki peran besar dalam karakterisasi dan memprioritaskan subcatchments. Penilaian tingkat tangkapan dan pemetaan hydrophysical sumber daya dapat mendukung identifikasi kendala, masalah-masalah ekologis dan adopsi dari praktek-praktek manajemen yang efektif yang mempertahankan tanah dan sumber daya air menggunakan strategi manajemen terpadu tangkapan. Sebagai tambahan ketersediaan hydrophysical parameter dalam format peta GIS dapat digunakan mudah untuk menjalankan model erosi untuk memahami distribusi spasial pada masalah-masalah ekologis seperti erosi tanah.
dalam banyak studi lingkungan, masukan data diukur pada satu titik dalam ruang, Meskipun klasik Statistik berasumsi bahwa diukur data independen dan dengan demikian tidak cukup untuk menganalisis spasial variabel dependen. Namun, informasi diperlukan untuk ruang seluruh tangkapan, yang memerlukan metode yang melakukan interpolasi data untuk memperkirakan nilai rata-rata dalam suatu daerah. Geostatistics menyediakan dasar untuk interpolasi spasial variabilitas erosi hydrophysical model parameter input yang mempengaruhi limpasan dan tanah kerugian.
untuk memperkirakan erosi tanah dan menyarankan manajemen sesuai rencana, banyak model erosi seperti Universal tanah kehilangan persamaan (USLE), Morgan-Morgan-Finney (MMF), air erosi prediksi proyek (WEPP), tanah dan air penilaian alat (SWAT), Model erosi tanah Eropa (EUROSEM), dan Annualized sumber bebas-titik pertanian (AnnAGNPS) telah dikembangkan dan digunakan data input yang dihasilkan melalui GIS. Antara ini model, USLE tetap metode yang paling praktis memperkirakan potensi selama lebih dari 40 tahun, meskipun fakta bahwa ia memiliki banyak keterbatasan untuk aplikasi tangkapan-skala erosi. Di sisi, lainnya erosi proses berbasis model dikembangkan sesudahnya memiliki keterbatasan dalam penerapan data yang intensif dan persyaratan komputasi. Penerapan model berbasis proses ini tidak selalu mudah karena ini memerlukan sejumlah besar informasi yang sering tidak tersedia, terutama dalam data langka kawasan berkembang. MMF model dipilih untuk memperkirakan kerugian tanah tahunan, karena model ini bertujuan untuk mempertahankan kesederhanaan USLE dan juga mencakup pemahaman tentang proses erosi menjadi fase air dan sedimen. Artinya, MMF model dipilih untuk diterapkan dalam studi ini karena kesederhanaan dan fleksibilitas dibandingkan dengan basis fisik model dan memiliki dasar fisik yang lebih kuat daripada USLE. Sebagai tambahan karena MMF model fisik berbasis-model empiris (campuran model), dibutuhkan sedikit data daripada kebanyakan lainnya erosi prediktif model.
memahami parameter hydrophysical yang dapat mempengaruhi tingkat erosi di tangkapan kompleks karena sifat gabungan proses alami dan fitur-fitur buatan manusia. Oleh karena itu, penelitian untuk mendapatkan Deskripsi kuantitatif hidrologi/erosi di tangkapan harus mempertimbangkan ini heterogeneities spasial. Untuk mengatasi terhadap masalah-masalah terkait hidrologi (limpasan, sedimentasi), representasi akurat atau locating distribusi spasial dan variabilitas parameter mempengaruhi penggunaan GIS diperlukan. Penelitian ini bertujuan untuk memperoleh dan menilai distribusi spasial hydrophysical parameter yang dikembangkan dengan menggunakan teknik GIS dan menerapkannya dalam model MMF untuk memperkirakan variabilitas spasial hilangnya tanah di dalam tangkapan Mai-Negus, Utara Ethiopia. Peta spasial dapat digunakan untuk memprioritaskan wilayah-wilayah di dalam tangkapan yang memerlukan tindakan segera pengelolaan berdasarkan tingkat keparahan limpasan tanah kehilangan.
Sedang diterjemahkan, harap tunggu..
Hasil (Bahasa Indonesia) 2:[Salinan]
Disalin!
Soil erosion is the dominant cause of soil degradation at a global scale. This is accounted for between 70 and 90% of total soil degradation. The adverse influences of soil erosion as a cause for soil degradation have long been recognized as a severe problem for sustainability of economic development. This is because a large portion of fertile soil is lost annually which negatively influences the goal of achieving food security. However, estimation of soil erosion rate is often difficult due to a complex interplay of many factors, besides the differences in scale and methodological components of the studies. In a country like Ethiopia, with an agriculture-based economy for more than 85% of population, having reliable soil loss data is indeed a matter of great concerns and not a matter of choice.
Regardless of the great deal of management practices undertaken aggressively in Ethiopia catchments by the government in the past 1-2 decades to reduce soil degradation, soil erosion by water is still recognized to be a severe threat to the national economy. This indicated that the existing literature on the rate of soil erosion in Ethiopia calls for a wise decision supporting tools in order to reduce the degradation level. For instance, past studies on soil erosion in the catchments of Tigray region (northern Ethiopia) showed variability ranging from 7 t ha−1 y−1 to more than 24 t ha−1 y−1 and 80 t ha−1 y−1. According to the report by FAO, erosion rate is estimated up to 130 t ha−1 y−1 from cropland and 35 t ha−1 y−1 averaged over all land use types in the highlands of Ethiopia. Such discrepancies in the rates of erosion by the studies mainly attributed to changes and differences in land use, management practices, and methods employed while developing input data and their respective scale of analysis. Predominantly, previous erosion related input data were developed from simple point observation such as runoff plot, and data were interpolated through conventional method. Such method poses many limitations in terms of cost, representation, and reliability of the resulting data. Recently, to reduce such limitations geostatistic techniques that interpolate data for an entire catchment from appropriately sampled point measurements are readily available.
Mapping through conventional methods demands an intensive data collection, which is often difficult to practice in complex terrains like in northern Ethiopia. The Geographic Information System (GIS) techniques can provide easy and time effective tools to map and analyze erosion input data of hydrophysical parameters. These techniques coupled with the concept of catchment priority can help in identifying areas where treatment plans should be first located. Many studies (e.g., Sharad et al.; Sanware et al.) revealed that GIS techniques can have a great role in characterization and prioritization of subcatchments. The catchment level assessment and mapping of hydrophysical resources can support the identification of constraints, ecological problems, and adoption of effective management practices that sustain land and water resources using integrated catchment management strategies. In addition, the availability of hydrophysical parameters in a GIS map format can be used readily for erosion model running in order to understand spatial distribution of ecological problems such as soil erosion.
In many environmental studies, data inputs are measured at single points in space, even though classical statistics assume that measured data are independent and thus are not sufficient to analyze spatially dependent variables. However, information is required for the entire catchment space, which necessitates methods that interpolate data to estimate the mean value within an area. Geostatistics provides the basis for interpolation spatial variability of hydrophysical erosion model input parameters that affect runoff and soil loss.
To estimate soil erosion and suggest appropriate management plans, many erosion models such as Universal Soil Loss Equation (USLE), Morgan-Morgan-Finney (MMF), Water Erosion Prediction Project (WEPP), Soil and Water Assessment Tool (SWAT), European Soil Erosion Model (EUROSEM), and Annualized Agricultural Non-Point Source (AnnAGNPS) have been developed and used data inputs generated through GIS. Among these models, the USLE has remained the most practical method of estimating soil erosion potential for more than 40 years, despite the fact that it has many limitations for application at catchment-scale. On the other-hand, process-based erosion models developed afterward have limitations in applicability due to intensive data and computation requirements. The application of process-based models is not always an easy task since these require large amounts of information which is often not available, mainly in data scarce developing regions. The MMF model was selected to estimate annual soil loss, since this model endeavours to retain the simplicity of USLE and also encompasses the understanding of erosion processes into water and sediment phases. Meaning, the MMF model was selected to be applied in this study because of its simplicity and flexibility as compared to the physical-base models and has a stronger physical base than USLE. In addition, since the MMF model is a physically based-empirical model (mix model), it needs less data than most of the other erosion predictive models.
Understanding the hydrophysical parameters that can influence erosion rate in a catchment is complex due to the combined nature of the natural processes and man-made features. Therefore, research to obtain quantitative description of hydrology/erosion in a catchment must consider these spatial heterogeneities. In order to tackle against hydrological related problems (runoff, sedimentation), accurate representation or locating the spatial distribution and variability of the influencing parameters using GIS is necessary. This study was aimed to derive and assess the spatial distribution of hydrophysical parameters developed using GIS technique and apply them in the MMF model for estimating the spatial variability of soil loss in the Mai-Negus catchment, northern Ethiopia. The spatial map can be used for prioritizing areas within the catchment that require immediate management measures on the basis of the severity of runoff/soil loss.
Sedang diterjemahkan, harap tunggu..
 
Bahasa lainnya
Dukungan alat penerjemahan: Afrikans, Albania, Amhara, Arab, Armenia, Azerbaijan, Bahasa Indonesia, Basque, Belanda, Belarussia, Bengali, Bosnia, Bulgaria, Burma, Cebuano, Ceko, Chichewa, China, Cina Tradisional, Denmark, Deteksi bahasa, Esperanto, Estonia, Farsi, Finlandia, Frisia, Gaelig, Gaelik Skotlandia, Galisia, Georgia, Gujarati, Hausa, Hawaii, Hindi, Hmong, Ibrani, Igbo, Inggris, Islan, Italia, Jawa, Jepang, Jerman, Kannada, Katala, Kazak, Khmer, Kinyarwanda, Kirghiz, Klingon, Korea, Korsika, Kreol Haiti, Kroat, Kurdi, Laos, Latin, Latvia, Lituania, Luksemburg, Magyar, Makedonia, Malagasi, Malayalam, Malta, Maori, Marathi, Melayu, Mongol, Nepal, Norsk, Odia (Oriya), Pashto, Polandia, Portugis, Prancis, Punjabi, Rumania, Rusia, Samoa, Serb, Sesotho, Shona, Sindhi, Sinhala, Slovakia, Slovenia, Somali, Spanyol, Sunda, Swahili, Swensk, Tagalog, Tajik, Tamil, Tatar, Telugu, Thai, Turki, Turkmen, Ukraina, Urdu, Uyghur, Uzbek, Vietnam, Wales, Xhosa, Yiddi, Yoruba, Yunani, Zulu, Bahasa terjemahan.

Copyright ©2024 I Love Translation. All reserved.

E-mail: