One way to measure the complexity of a set (an orbit of the map, an at terjemahan - One way to measure the complexity of a set (an orbit of the map, an at Bahasa Indonesia Bagaimana mengatakan

One way to measure the complexity o

One way to measure the complexity of a set (an orbit of the map, an attracting set of the map) is to compute its dimension over different scales of magnification. If after many magnifications the set look like a simple geometric object such as line (polygon) then its dimension is simply a positive integer 1 . However, there are many sets that can be effectively constructed, such as Cantor set etc. which has a level of complication that does not simplify upon magnification. To explore this idea by imagining the set lying on a grid of equal spacing, and checking the number of grid boxes necessary for covering it. Then we see how this number varies as the grid size is made smaller.
Consider a grid of step size (b-a)/n on the interval [a,b]. This means that the grid points are a, a + (b-a)/n, ..., b. Obviously, there are n subintervals (boxes) of length (b-a)/n. If we use the boxes of length 1/n, then their number is (b-a)n. This fact is expressed by saying that the number of boxes of size r scales as 1/r, meaning that the number of boxes of size r, N(r) is proportional to 1/r, i.e.
N(r) ~ 1/r N(r) = C 1/r.

Based on this example, it is natural to ask the following question. Given an object in 1-dimensional space, how many intervals of length r does it take to cover the object ? In the case of simple sets such as interval it is easy to see that this number is exactly C (1/r) . Our goal is to extend this idea to more complicated sets, and to define the dimension d of the object in cases where this dimension is positive noninteger number.
Let S be a bounded set in R. We would like to define that S is a d-dimensional set when it can be covered by N(r) = C (1/r)^d boxes of side-length r. Solving equation
N(r) ~ (1/r)^d N(r) = C (1/r)^d
for d we get
d = (ln N(r) - ln C) / ln(1/r) .
Taking r to go to 0 and assuming that the scaling constant C remain unchanged, we can neglect ln C in this formula for small r. This justifies the following:

DEFINITION (box dimension) A bounded set S in R has box dimension (box-counting dimension)
BoxDimension(S) = lim (ln N(r)) / (ln (1/r)), as r -> 0, ( 5 )
when the limit exists.
0/5000
Dari: -
Ke: -
Hasil (Bahasa Indonesia) 1: [Salinan]
Disalin!
One way to measure the complexity of a set (an orbit of the map, an attracting set of the map) is to compute its dimension over different scales of magnification. If after many magnifications the set look like a simple geometric object such as line (polygon) then its dimension is simply a positive integer 1 . However, there are many sets that can be effectively constructed, such as Cantor set etc. which has a level of complication that does not simplify upon magnification. To explore this idea by imagining the set lying on a grid of equal spacing, and checking the number of grid boxes necessary for covering it. Then we see how this number varies as the grid size is made smaller. Consider a grid of step size (b-a)/n on the interval [a,b]. This means that the grid points are a, a + (b-a)/n, ..., b. Obviously, there are n subintervals (boxes) of length (b-a)/n. If we use the boxes of length 1/n, then their number is (b-a)n. This fact is expressed by saying that the number of boxes of size r scales as 1/r, meaning that the number of boxes of size r, N(r) is proportional to 1/r, i.e. N(r) ~ 1/r <=> N(r) = C 1/r.Based on this example, it is natural to ask the following question. Given an object in 1-dimensional space, how many intervals of length r does it take to cover the object ? In the case of simple sets such as interval it is easy to see that this number is exactly C (1/r) . Our goal is to extend this idea to more complicated sets, and to define the dimension d of the object in cases where this dimension is positive noninteger number. Let S be a bounded set in R. We would like to define that S is a d-dimensional set when it can be covered by N(r) = C (1/r)^d boxes of side-length r. Solving equation N(r) ~ (1/r)^d <=> N(r) = C (1/r)^d for d we get d = (ln N(r) - ln C) / ln(1/r) .Taking r to go to 0 and assuming that the scaling constant C remain unchanged, we can neglect ln C in this formula for small r. This justifies the following:DEFINITION (box dimension) A bounded set S in R has box dimension (box-counting dimension) BoxDimension(S) = lim (ln N(r)) / (ln (1/r)), as r -> 0, ( 5 )when the limit exists.
Sedang diterjemahkan, harap tunggu..
Hasil (Bahasa Indonesia) 2:[Salinan]
Disalin!
Salah satu cara untuk mengukur kompleksitas set (orbit dari peta, set menarik dari peta) adalah untuk menghitung dimensi lebih skala yang berbeda dari pembesaran. Jika setelah banyak perbesaran set terlihat seperti objek geometris sederhana seperti garis (poligon) maka dimensinya hanya bilangan bulat positif 1. Namun, ada banyak set yang dapat secara efektif dibangun, seperti penyanyi set dll yang memiliki tingkat komplikasi yang tidak menyederhanakan pada pembesaran. Untuk mengeksplorasi ide ini dengan membayangkan set berbaring di grid jarak yang sama, dan memeriksa jumlah kotak kotak yang diperlukan untuk menutupinya. Kemudian kita melihat bagaimana jumlah ini bervariasi sebagai ukuran grid dibuat lebih kecil.
Pertimbangkan grid ukuran langkah (ba) / n pada interval [a, b]. Ini berarti bahwa titik-titik grid adalah, a + (ba) / n, ..., b. Jelas, ada n subinterval (kotak) panjang (ba) / n. Jika kita menggunakan kotak panjang 1 / n, maka jumlah mereka (ba) n. Fakta ini diungkapkan dengan mengatakan bahwa jumlah kotak dari skala ukuran r sebagai 1 / r, yang berarti bahwa jumlah kotak ukuran r, N (r) sebanding dengan 1 / r, yaitu
N (r) ~ 1 / r <=> N (r) = C 1 / r. Berdasarkan contoh ini, adalah wajar untuk mengajukan pertanyaan berikut. Mengingat obyek dalam ruang 1-dimensi, berapa banyak interval panjang r yang dibutuhkan untuk menutupi objek? Dalam kasus set sederhana seperti selang mudah untuk melihat bahwa jumlah ini adalah persis C (1 / r). Tujuan kami adalah untuk memperluas ide ini untuk set lebih rumit, dan untuk menentukan d dimensi dari objek dalam kasus di mana dimensi ini adalah nomor noninteger positif. Misalkan S set dibatasi di R. Kami ingin menentukan bahwa S adalah d set berdimensi ketika dapat ditutupi oleh N (r) = C (1 / r) ^ d kotak samping panjang r. Persamaan pemecahan N (r) ~ (1 / r) ^ d <=> N (r) = C (1 / r) ^ d untuk d kita mendapatkan d = (ln N (r) - ln C) / ln (1 / r). Mengambil r untuk pergi ke 0 dan dengan asumsi bahwa skala konstan C tetap tidak berubah, kita dapat mengabaikan ln C dalam formula ini untuk r kecil. Ini membenarkan berikut: DEFINISI (dimensi kotak) Satu set dibatasi S di R memiliki dimensi kotak (dimensi kotak-menghitung) BoxDimension (S) = lim (ln N (r)) / (ln (1 / r)), sebagai r -> 0, (5) ketika batas yang ada.










Sedang diterjemahkan, harap tunggu..
 
Bahasa lainnya
Dukungan alat penerjemahan: Afrikans, Albania, Amhara, Arab, Armenia, Azerbaijan, Bahasa Indonesia, Basque, Belanda, Belarussia, Bengali, Bosnia, Bulgaria, Burma, Cebuano, Ceko, Chichewa, China, Cina Tradisional, Denmark, Deteksi bahasa, Esperanto, Estonia, Farsi, Finlandia, Frisia, Gaelig, Gaelik Skotlandia, Galisia, Georgia, Gujarati, Hausa, Hawaii, Hindi, Hmong, Ibrani, Igbo, Inggris, Islan, Italia, Jawa, Jepang, Jerman, Kannada, Katala, Kazak, Khmer, Kinyarwanda, Kirghiz, Klingon, Korea, Korsika, Kreol Haiti, Kroat, Kurdi, Laos, Latin, Latvia, Lituania, Luksemburg, Magyar, Makedonia, Malagasi, Malayalam, Malta, Maori, Marathi, Melayu, Mongol, Nepal, Norsk, Odia (Oriya), Pashto, Polandia, Portugis, Prancis, Punjabi, Rumania, Rusia, Samoa, Serb, Sesotho, Shona, Sindhi, Sinhala, Slovakia, Slovenia, Somali, Spanyol, Sunda, Swahili, Swensk, Tagalog, Tajik, Tamil, Tatar, Telugu, Thai, Turki, Turkmen, Ukraina, Urdu, Uyghur, Uzbek, Vietnam, Wales, Xhosa, Yiddi, Yoruba, Yunani, Zulu, Bahasa terjemahan.

Copyright ©2025 I Love Translation. All reserved.

E-mail: