The role of interestingness is to threshold the huge number of discove terjemahan - The role of interestingness is to threshold the huge number of discove Bahasa Indonesia Bagaimana mengatakan

The role of interestingness is to t

The role of interestingness is to threshold the huge number of discovered patterns and report only those which may be of some use. There are two approaches to designing a measure of interestingness of a pattern, viz., objective and subjective. The former uses the structure of the pattern and is generally used for computing rule interestingness. However often it fails to cap¬ture all the complexities of the pattern discovery process. The subjective approach, on the other hand, depends additionally on the user who examines the pattern. Two major reasons why a pattern is interesting from the subjective (user-oriented) point of view are as follows [15].
• Unexpectedness: when it is ‘surprising’ to the user.
• Actionability: when the user can act on it to her/his advan¬tage.
Though both these concepts are important is has often been ob¬served that actionability and unexpectedness are correlated. In literature, unexpectedness is often defined in terms of the dis¬similarity of a discovered pattern from a vocabulary provided by the user.
As an example, consider a database of student evaluations of different courses offered at some university. This can be defined
as EVALUATE (TERM, YEAR, COURSE, SECTION, INSTRUCTOR, INSTRUCT RATING, COURSE RATING). We describe two patterns
that are interesting in terms of actionability and unexpectedness, respectively. The pattern that Professor X is consistently getting the overall INSTRUCTRATING below overall COURSE RATING can be ofinterest to the chairpersonbecause this shows that Professor X has room for improvement. If, on the other hand, in most of the course evaluations the overall INSTRUCT RATING is higher than COURSE RATING and it turns out that in most of Professor X’s rating overall INSTRUCTRATING is lower than COURSERATING, then such a pattern is unexpected and hence interesting.
Data mining is a step in the KDD process consisting of a par-ticular enumeration of patterns over the data, subject to some



0/5000
Dari: -
Ke: -
Hasil (Bahasa Indonesia) 1: [Salinan]
Disalin!
The role of interestingness is to threshold the huge number of discovered patterns and report only those which may be of some use. There are two approaches to designing a measure of interestingness of a pattern, viz., objective and subjective. The former uses the structure of the pattern and is generally used for computing rule interestingness. However often it fails to cap¬ture all the complexities of the pattern discovery process. The subjective approach, on the other hand, depends additionally on the user who examines the pattern. Two major reasons why a pattern is interesting from the subjective (user-oriented) point of view are as follows [15].• Unexpectedness: when it is ‘surprising’ to the user.• Actionability: when the user can act on it to her/his advan¬tage.Though both these concepts are important is has often been ob¬served that actionability and unexpectedness are correlated. In literature, unexpectedness is often defined in terms of the dis¬similarity of a discovered pattern from a vocabulary provided by the user.As an example, consider a database of student evaluations of different courses offered at some university. This can be definedas EVALUATE (TERM, YEAR, COURSE, SECTION, INSTRUCTOR, INSTRUCT RATING, COURSE RATING). We describe two patternsthat are interesting in terms of actionability and unexpectedness, respectively. The pattern that Professor X is consistently getting the overall INSTRUCTRATING below overall COURSE RATING can be ofinterest to the chairpersonbecause this shows that Professor X has room for improvement. If, on the other hand, in most of the course evaluations the overall INSTRUCT RATING is higher than COURSE RATING and it turns out that in most of Professor X’s rating overall INSTRUCTRATING is lower than COURSERATING, then such a pattern is unexpected and hence interesting.Data mining is a step in the KDD process consisting of a par-ticular enumeration of patterns over the data, subject to some
Sedang diterjemahkan, harap tunggu..
Hasil (Bahasa Indonesia) 2:[Salinan]
Disalin!
Peran interestingness adalah untuk ambang jumlah besar pola ditemukan dan hanya mereka yang mungkin dari beberapa penggunaan laporan. Ada dua pendekatan untuk merancang ukuran interestingness dari pola, yaitu, objektif dan subjektif. Mantan menggunakan struktur dari pola dan umumnya digunakan untuk menghitung aturan interestingness. Namun sering gagal untuk cap¬ture semua kompleksitas dari proses penemuan pola. Pendekatan subjektif, di sisi lain, tergantung tambahan pada pengguna yang menguji pola. Dua alasan utama mengapa pola menarik dari subjektif (berorientasi pengguna) sudut pandang adalah sebagai berikut [15].
• disangka-sangka: ketika 'mengejutkan' kepada pengguna.
• Actionability: ketika pengguna dapat bertindak di atasnya untuk dia / advan¬tage nya.
Meskipun kedua konsep ini penting adalah sering ob¬served yang actionability dan tidak disangka-sangka berkorelasi. Dalam literatur, tidak disangka-sangka sering didefinisikan dalam hal dis¬similarity dari pola ditemukan dari kosa kata yang disediakan oleh pengguna.
Sebagai contoh, mempertimbangkan database evaluasi mahasiswa program yang berbeda yang ditawarkan di beberapa universitas. Hal ini dapat didefinisikan
sebagai EVALUASI (JANGKA, TAHUN, KURSUS, BAGIAN, INSTRUKTUR, menginstruksikan RATING, KURSUS RATING). Kami menggambarkan dua pola
yang menarik dalam hal actionability dan tidak disangka-sangka, masing-masing. Pola bahwa Profesor X secara konsisten mendapatkan INSTRUCTRATING keseluruhan di bawah keseluruhan RATING KURSUS dapat ofinterest untuk chairpersonbecause yang menunjukkan bahwa Profesor X memiliki ruang untuk perbaikan. Jika, di sisi lain, di sebagian besar evaluasi saja RATING INSTRUCT keseluruhan lebih tinggi dari KURSUS PENILAIAN dan ternyata bahwa di sebagian besar dari INSTRUCTRATING keseluruhan Professor X lebih rendah dari COURSERATING, maka pola tersebut adalah tak terduga dan karenanya menarik.
Data mining merupakan langkah dalam proses KDD terdiri dari pencacahan par-TERTENTU pola atas data, tunduk pada beberapa



Sedang diterjemahkan, harap tunggu..
 
Bahasa lainnya
Dukungan alat penerjemahan: Afrikans, Albania, Amhara, Arab, Armenia, Azerbaijan, Bahasa Indonesia, Basque, Belanda, Belarussia, Bengali, Bosnia, Bulgaria, Burma, Cebuano, Ceko, Chichewa, China, Cina Tradisional, Denmark, Deteksi bahasa, Esperanto, Estonia, Farsi, Finlandia, Frisia, Gaelig, Gaelik Skotlandia, Galisia, Georgia, Gujarati, Hausa, Hawaii, Hindi, Hmong, Ibrani, Igbo, Inggris, Islan, Italia, Jawa, Jepang, Jerman, Kannada, Katala, Kazak, Khmer, Kinyarwanda, Kirghiz, Klingon, Korea, Korsika, Kreol Haiti, Kroat, Kurdi, Laos, Latin, Latvia, Lituania, Luksemburg, Magyar, Makedonia, Malagasi, Malayalam, Malta, Maori, Marathi, Melayu, Mongol, Nepal, Norsk, Odia (Oriya), Pashto, Polandia, Portugis, Prancis, Punjabi, Rumania, Rusia, Samoa, Serb, Sesotho, Shona, Sindhi, Sinhala, Slovakia, Slovenia, Somali, Spanyol, Sunda, Swahili, Swensk, Tagalog, Tajik, Tamil, Tatar, Telugu, Thai, Turki, Turkmen, Ukraina, Urdu, Uyghur, Uzbek, Vietnam, Wales, Xhosa, Yiddi, Yoruba, Yunani, Zulu, Bahasa terjemahan.

Copyright ©2025 I Love Translation. All reserved.

E-mail: