structure that regulates the access to the active site. The hydrolysis terjemahan - structure that regulates the access to the active site. The hydrolysis Bahasa Indonesia Bagaimana mengatakan

structure that regulates the access

structure that regulates the access to the active site. The hydrolysis of the lipid p-nitrophenyl ester by lipases A and B of C. rugosa was characterized by Rodendo et al. (1995). Lipase A was maximally active on caprylate, whereas lipase B had maximal activity on laurate. The two enzymes were identical in other respects. Similarly, a commercial lipolytic preparation of Ch. viscosum was reported to contain two different lipases (Taipa et al., 1995).
9. Immobilization of lipases
Both native and immobilized lipases are available commercially. Lipases used in laundry
detergents and many other applications are not immobilized; however, an increasing number
of speciality applications of lipases in synthesis and biotransformation demand an immobilized
biocatalyst for efficiency of use. Immobilization improves recyclability of expensive
lipases. Also, immobilization can enhance enzyme stability and activity.
Many methods have been used to immobilize lipases, including adsorption or precipitation
onto hydrophobic materials (Wisdom et al., 1984), covalent attachment to functional groups
(Shaw et al., 1990), entrapment in polymer gels (Telefoncu et al., 1990), adsorption in
macroporous anion exchange resins (Rizzi et al., 1992), microencapsulation in lipid vesicles
(Balca o et al., 1996), and sol–gel entrapment (Jaeger and Reetz, 1998; Krishnakant and
Madamwar, 2001). G. candidum lipases A and B were immobilized on Accurel EP 100
porous polypropylene supports, precoated with ovalbumin to increase stability in organic
solvents and at elevated temperatures (Charton and Macrae, 1992). Bosley and Clayton
(1994) used hydrophobic controlled pore glasses to immobilize R. miehei lipase. Reetz et al.
(1995) employed sol–gel entrapment in silica gel to immobilize various lipases.
C. cylindracea lipase was immobilized on methyl acrylate divinyl benzene copolymer and
its derivatives (Xu et al., 1995). The immobilized lipase had improved resistance to thermal
denaturation than the native enzyme (Xu et al., 1995). Reetz et al. (1996) reported an
immobilization procedure using alkyl silane precursors of the type R Si (OCH mixtures of R Si (OCH 3) 3 and Si (OCH 3 ) to immobilize C. antarctica lipase. This immobilization process provided highly active, chemically and thermally stable, heterogeneous biocatalysts (Reetz et al., 1996). Shin et al. (1997) prepared a celite-immobilized lipase of A. oryzae and used it for continuous esterification of N-protected amino acids with secondary alcohols in organic solvents (Shin et al., 1997). Jaeger and Reetz (1998) produced glutaraldehyde cross-linked microcrystals of CRL. These cross-linked crystals were used for the chiral resolution of commercially important compounds by ester hydrolysis. 4 Arroyo et al. (1999) covalently immobilized C. antarctica lipase B on Sepharose, alumina, and silica. This increased the thermal stability of the catalyst and modified its apparent mode of deactivation relative to the native enzyme. In one case, Amberlite IRC 50 was a suitable adsorbent for immobilizing the purified Rhizop. oryzae lipase (Hiol et al., 2000). Compared to other supports, Amberlite offered a high adsorption capacity and good long-term stability of the immobilized lipase. The stability of the immobilized enzyme was assessed by studying its capacity to esterify equimolar amounts of oleic acid and hexanol in cyclohexane at 30 C (Hiol et al., 2000). The stability was further assessed by measuring the hydrolyzing activity of 3) 3 and
0/5000
Dari: -
Ke: -
Hasil (Bahasa Indonesia) 1: [Salinan]
Disalin!
structure that regulates the access to the active site. The hydrolysis of the lipid p-nitrophenyl ester by lipases A and B of C. rugosa was characterized by Rodendo et al. (1995). Lipase A was maximally active on caprylate, whereas lipase B had maximal activity on laurate. The two enzymes were identical in other respects. Similarly, a commercial lipolytic preparation of Ch. viscosum was reported to contain two different lipases (Taipa et al., 1995).
9. Immobilization of lipases
Both native and immobilized lipases are available commercially. Lipases used in laundry
detergents and many other applications are not immobilized; however, an increasing number
of speciality applications of lipases in synthesis and biotransformation demand an immobilized
biocatalyst for efficiency of use. Immobilization improves recyclability of expensive
lipases. Also, immobilization can enhance enzyme stability and activity.
Many methods have been used to immobilize lipases, including adsorption or precipitation
onto hydrophobic materials (Wisdom et al., 1984), covalent attachment to functional groups
(Shaw et al., 1990), entrapment in polymer gels (Telefoncu et al., 1990), adsorption in
macroporous anion exchange resins (Rizzi et al., 1992), microencapsulation in lipid vesicles
(Balca o et al., 1996), and sol–gel entrapment (Jaeger and Reetz, 1998; Krishnakant and
Madamwar, 2001). G. candidum lipases A and B were immobilized on Accurel EP 100
porous polypropylene supports, precoated with ovalbumin to increase stability in organic
solvents and at elevated temperatures (Charton and Macrae, 1992). Bosley and Clayton
(1994) used hydrophobic controlled pore glasses to immobilize R. miehei lipase. Reetz et al.
(1995) employed sol–gel entrapment in silica gel to immobilize various lipases.
C. cylindracea lipase was immobilized on methyl acrylate divinyl benzene copolymer and
its derivatives (Xu et al., 1995). The immobilized lipase had improved resistance to thermal
denaturation than the native enzyme (Xu et al., 1995). Reetz et al. (1996) reported an
immobilization procedure using alkyl silane precursors of the type R Si (OCH mixtures of R Si (OCH 3) 3 and Si (OCH 3 ) to immobilize C. antarctica lipase. This immobilization process provided highly active, chemically and thermally stable, heterogeneous biocatalysts (Reetz et al., 1996). Shin et al. (1997) prepared a celite-immobilized lipase of A. oryzae and used it for continuous esterification of N-protected amino acids with secondary alcohols in organic solvents (Shin et al., 1997). Jaeger and Reetz (1998) produced glutaraldehyde cross-linked microcrystals of CRL. These cross-linked crystals were used for the chiral resolution of commercially important compounds by ester hydrolysis. 4 Arroyo et al. (1999) covalently immobilized C. antarctica lipase B on Sepharose, alumina, and silica. This increased the thermal stability of the catalyst and modified its apparent mode of deactivation relative to the native enzyme. In one case, Amberlite IRC 50 was a suitable adsorbent for immobilizing the purified Rhizop. oryzae lipase (Hiol et al., 2000). Compared to other supports, Amberlite offered a high adsorption capacity and good long-term stability of the immobilized lipase. The stability of the immobilized enzyme was assessed by studying its capacity to esterify equimolar amounts of oleic acid and hexanol in cyclohexane at 30 C (Hiol et al., 2000). The stability was further assessed by measuring the hydrolyzing activity of 3) 3 and
Sedang diterjemahkan, harap tunggu..
Hasil (Bahasa Indonesia) 2:[Salinan]
Disalin!
Struktur yang mengatur akses ke situs aktif. Hidrolisis lipid p-nitrofenil ester oleh lipase A dan B C. rugosa ditandai dengan Rodendo et al. (1995). Lipase A adalah maksimal aktif di kaprilat, sedangkan lipase B memiliki aktivitas maksimal pada laurat. Kedua enzim yang identik dalam hal lain. Demikian pula, persiapan lipolitik komersial Ch. viscosum dilaporkan mengandung dua lipase yang berbeda (Taipa et al., 1995).
9. Imobilisasi lipase
Kedua lipase asli dan bergerak yang tersedia secara komersial. Lipase digunakan dalam cucian
deterjen dan banyak aplikasi lainnya tidak bergerak; Namun, peningkatan jumlah
aplikasi khusus dari lipase dalam sintesis dan biotransformasi menuntut amobil
biokatalis untuk efisiensi penggunaan. Immobilisasi meningkatkan daur ulang mahal
lipase. Juga, imobilisasi dapat meningkatkan stabilitas dan aktivitas enzim.
Banyak metode telah digunakan untuk melumpuhkan lipase, termasuk adsorpsi atau pengendapan
ke bahan hidrofobik (Wisdom et al., 1984), kovalen kelompok fungsional
(Shaw et al., 1990), jebakan dalam gel polimer (Telefoncu et al., 1990), adsorpsi di
berpori resin penukar anion (Rizzi et al., 1992), mikroenkapsulasi dalam vesikel lipid
(Balca o et al., 1996), dan sol-gel jebakan (Jaeger dan Reetz 1998; Krishnakant dan
Madamwar, 2001). G. lipase candidum A dan B yang bergerak di Accurel EP 100
berpori mendukung polypropylene, precoated dengan ovalbumin untuk meningkatkan stabilitas organik
pelarut dan pada temperatur tinggi (Charton dan Macrae, 1992). Bosley dan Clayton
(1994) menggunakan kacamata pori dikontrol hidrofobik untuk melumpuhkan R. miehei lipase. Reetz et al.
(1995) digunakan sol-gel jebakan dalam gel silika untuk melumpuhkan berbagai lipase.
C. cylindracea lipase diamobilisasi pada metil akrilat copolymer divinil benzena dan
turunannya (Xu et al., 1995). Lipase amobil telah meningkatkan ketahanan terhadap panas
denaturasi dibandingkan enzim asli (Xu et al., 1995). Reetz et al. (1996) melaporkan
prosedur imobilisasi menggunakan prekursor alkil silan dari tipe R Si (OCH campuran R Si (OCH 3) 3 dan Si (OCH 3) untuk melumpuhkan C. lipase antartika. Proses imobilisasi ini disediakan sangat aktif, kimia dan termal stabil, biocatalysts heterogen (Reetz et al., 1996). Shin et al. (1997) menyiapkan lipase celite-amobil A. oryzae dan digunakan untuk esterifikasi kontinyu asam amino N-dilindungi dengan alkohol sekunder dalam pelarut organik (Shin et al., 1997). Jaeger dan Reetz (1998) diproduksi glutaraldehid silang mikrokristal dari CRL. Ini silang kristal digunakan untuk resolusi kiral senyawa penting secara komersial oleh hidrolisis ester. 4 Arroyo et al. (1999) kovalen amobil C. antartika lipase B di Sepharose, alumina, dan silika. Hal ini meningkatkan stabilitas termal katalis dan dimodifikasi modus yang tampak jelas dari penonaktifan relatif terhadap enzim asli. Dalam satu kasus, Amberlite IRC 50 adalah adsorben yang cocok untuk melumpuhkan dimurnikan Rhizop. oryzae lipase (Hiol et al., 2000). Dibandingkan dengan dukungan lainnya, Amberlite menawarkan kapasitas adsorpsi yang tinggi dan stabilitas jangka panjang baik dari lipase amobil. Stabilitas enzim amobil dinilai dengan mempelajari kapasitasnya untuk esterify jumlah molar yang sama dari asam oleat dan heksanol di sikloheksana pada 30? C (Hiol et al., 2000). Stabilitas selanjutnya dinilai dengan mengukur aktivitas hidrolisis dari 3) 3 dan
Sedang diterjemahkan, harap tunggu..
 
Bahasa lainnya
Dukungan alat penerjemahan: Afrikans, Albania, Amhara, Arab, Armenia, Azerbaijan, Bahasa Indonesia, Basque, Belanda, Belarussia, Bengali, Bosnia, Bulgaria, Burma, Cebuano, Ceko, Chichewa, China, Cina Tradisional, Denmark, Deteksi bahasa, Esperanto, Estonia, Farsi, Finlandia, Frisia, Gaelig, Gaelik Skotlandia, Galisia, Georgia, Gujarati, Hausa, Hawaii, Hindi, Hmong, Ibrani, Igbo, Inggris, Islan, Italia, Jawa, Jepang, Jerman, Kannada, Katala, Kazak, Khmer, Kinyarwanda, Kirghiz, Klingon, Korea, Korsika, Kreol Haiti, Kroat, Kurdi, Laos, Latin, Latvia, Lituania, Luksemburg, Magyar, Makedonia, Malagasi, Malayalam, Malta, Maori, Marathi, Melayu, Mongol, Nepal, Norsk, Odia (Oriya), Pashto, Polandia, Portugis, Prancis, Punjabi, Rumania, Rusia, Samoa, Serb, Sesotho, Shona, Sindhi, Sinhala, Slovakia, Slovenia, Somali, Spanyol, Sunda, Swahili, Swensk, Tagalog, Tajik, Tamil, Tatar, Telugu, Thai, Turki, Turkmen, Ukraina, Urdu, Uyghur, Uzbek, Vietnam, Wales, Xhosa, Yiddi, Yoruba, Yunani, Zulu, Bahasa terjemahan.

Copyright ©2025 I Love Translation. All reserved.

E-mail: