New concepts in agricultural automationSimon BlackmoreCenter for Resea terjemahan - New concepts in agricultural automationSimon BlackmoreCenter for Resea Bahasa Indonesia Bagaimana mengatakan

New concepts in agricultural automa

New concepts in agricultural automation
Simon Blackmore
Center for Research and Technology of Thessaly, Greece
simon@unibots.com

Summary
Many new agricultural automation technologies are being developed by university researchers that pose questions about the efficiency and effectiveness with which we carry out current agricultural practices. This has given rise to many new opportunities to service the agronomic requirements albeit in radically different ways to those currently used. This paper sets out 41 concepts relating to this work. Some are new and untried; others have been built and tested in research conditions or are traditional
concepts that have been revisited in light of new technological opportunities. This paper aims to raise awareness that there are now alternative ways to support the cropping system; it is not meant to give a definitive view. Only time will tell which ones become successful.

Introduction
The development of precision farming technologies in the 1990s opened up a new way of thinking about mechanisation for crop care. It introduced a number of concepts, which although not new, brought about a shift in the thinking and management of variability. With yield mapping and VRT (Variable Rate Treatments) the spatial scale of variability could be practically assessed and treated for the first time since mechanisation was first used. Preprecision farming, managers assumed that spatial and temporal variability existed but did not have the ability or tools to deal with it. Since then we have seen the scale of management and hence treatments reduce from farm-scale, down to field-scale, through to sub-field scale with varying expectations and benefits.

This technology trend has continued to the point where we now have many smart
controllers that allow the scale of treatment to be reduced further, down to the plant and even leaf scale. In doing so, these new methods of introducing smart controllers and automation have enabled the development of new concepts of practical crop management that were not feasible before. We now have levels of automation where we can consider the methods people used before large-scale machinery was introduced and see if these same methods can be utilised today using small smart machines.

New concepts
Many new concepts are being developed to allow agricultural automation to flourish and deliver its full potential. In some respects this needs a paradigm shift away from how we have done these tasks in the past to how we could do them using SSM (small smart machines). The current trend of machinery development is incremental where each new machine is a little better than the one before. This is a successful approach but one that ignores radical alternatives and opportunities.

Take size for example. We have seen the continued increase in size and work rates of agricultural machines over the years, which to a large extent, can be highly beneficial as more work can be done by a reduced labour force, hence giving increased economy of scale but it also has a detrimental effect on the ability to deal with spatial and temporal variability. Many machines have been retrofitted with VRT controllers to help deal with this. An alternative approach can be taken by extending the vision to the point where the machine can work by itself, without constant human supervision. But if this radical scenario is to be fully developed it should take into account not only current problems but also identify potential opportunities. By taking this approach we can redefine the basic agronomic plant needs irrespective of the current machinery constraints and develop new SSMs that meet these needs alongside environmental care and economic prudence, health and safety, work directives and societal impacts, i.e. we start with a blank sheet and design the system of machines we need currently and those for the future.

To take full advantage of these technologies, we should not just consider the implication of developing a new single technology but should look at the wider issues of a complete mechanisation system, including appropriate machinery management. To do this we have to consider all the impacts and implications but in doing so we need to define some of the systemic concepts that underlie the designs. This is not intended to be a recipe for developing new system but an explanation of some of the new concepts encountered.

When taking a systematic view of agricultural robotics, we can see there are many factors that will affect the final designs. Figure 1 shows a first attempt to define the numerous interactions.



Figure 1. How system environment affects agricultural robotics (from Blackmore, 2007)

The system in question is the mechanised support for growing crops which is increasingly becoming more automated and may lead to a system of agricultural robots. There would appear to be two sets of concepts developing: those that apply to the whole system (systemic) and those that describe the parts of the system (systematic). The next section describes new (and not so new) concepts from both perspectives.

Systemic concepts
These concepts deal with overarching ideas that impact the whole mechanisation sector.

Phytotechnology: This word was first used in this context by Shibusawa (1996) to describe machines that were better suited to dealing with individual plants. Tillett and Hague (1998) developed a similar conceptual approach called plant-scale husbandry in their weed spraying robot. This concept takes the emphasis away from the machine and work rates and focuses directly on plant needs – to develop an autonomous machine that can tend and care for each individual plant according to its needs. When plant requirements are defined independently of the machine that carries out the corresponding operations, this improved specification can be used in conjunction with mechatronic
principles to design smarter and more efficient machines.

Intelligently Targeted Inputs (ITI): Current machines do not usually use sensors or control systems to regulate what happens during field operations. They tend to use blanket treatments and in many cases it is quite difficult to achieve the desired levels of accuracy. Consequently this approach uses more inputs than are necessary. This leads to higher costs as well as environmental pollution. These inputs can be seen as energy inputs and many field operations can be equally categorized in the form of energy, such as the energy requirement to build the tractor, energy to make the chemicals and energy to fuel the machines. From both environmental and economic perspectives, this energy should be limited to a minimum of what is needed both in how it is delivered (there is not much point in having a 10 tonne tractor applying a few grams of chemical) and how it is targeted to the
right place at the right time in the right way to make best use of its potential and minimise
waste.

In some respects, this is nothing new; if a person were to establish, care for and harvest a number of valuable plants, they would instinctively try to understand the plants’ requirements and apply only those inputs which are needed by using perception and rationality. This is the precept of intelligently targeted inputs.

Zero draft force is another strange concept to many. We know that draft force is an important part of the way in which machines, particularly tractors, impart their energy to the soil in a horizontal manner. This is why tractors have large back wheels and heavy front weights. Many soil-engaging operations can be made draft force neutral or have a significantly reduced draft force requirement. Although we could never achieve ‘zero’ draft force due to the rolling resistance of the soil to the wheel, it can be reduced drastically by reducing overall machine weight. This gives a circular argument: the lower draft needs less weight which causes less compaction and less compaction needs less draft force energy requirement to break it up.

Zero compaction is the ability to carry out field operations without compacting soil, thus negating the requirement for more energy to reinstate soil structure. After lengthy consideration it now seems strange to run machines on top of the growing media and damage the soil that is there to grow plants – not support tractors. Again, this is not new and many techniques have been developed to help minimise soil damage by big tractors, especially controlled traffic. In the SSM system we need to know what maximum size of robot and hence ground pressure can be sustained before damage occurs. Even if some damage occurs self remediation can take place due to natural activity of native soil flora and fauna. If we can carry out field operations below this threshold then we may consider we have zero compaction.

Energetic autonomy is the ability of a machine to get its motive energy from its surroundings rather than from an imported energy source. The concept has been successfully trialled (Leropoulos et al., 2003; Kelly et al., 2000) and could be extended to include SSMs running a hybrid system of batteries and an engine run on biofuel grown and processed on-farm. As in the days of using horse power, land could be set aside to give motive energy requirements for the robots, thus giving a closed energy loop on the farm.



Figure 2. Agricultural energy flows

Usability is an important concept in the design and introduction of any new technology. In Precision Farming we (the scientists and engineers) made agriculture too complex for most farmers by introducing endless maps of differing soil and crop properties, without developing a clear method to use them for their own purposes. Any new technology must be intuitive and simple to use, without having long training courses and thick manuals.

Modularity should be incorporated at all levels of design from system architecture and software, right up to logistics and packaging. Given
0/5000
Dari: -
Ke: -
Hasil (Bahasa Indonesia) 1: [Salinan]
Disalin!
New concepts in agricultural automationSimon BlackmoreCenter for Research and Technology of Thessaly, Greecesimon@unibots.comSummary Many new agricultural automation technologies are being developed by university researchers that pose questions about the efficiency and effectiveness with which we carry out current agricultural practices. This has given rise to many new opportunities to service the agronomic requirements albeit in radically different ways to those currently used. This paper sets out 41 concepts relating to this work. Some are new and untried; others have been built and tested in research conditions or are traditional concepts that have been revisited in light of new technological opportunities. This paper aims to raise awareness that there are now alternative ways to support the cropping system; it is not meant to give a definitive view. Only time will tell which ones become successful. Introduction The development of precision farming technologies in the 1990s opened up a new way of thinking about mechanisation for crop care. It introduced a number of concepts, which although not new, brought about a shift in the thinking and management of variability. With yield mapping and VRT (Variable Rate Treatments) the spatial scale of variability could be practically assessed and treated for the first time since mechanisation was first used. Preprecision farming, managers assumed that spatial and temporal variability existed but did not have the ability or tools to deal with it. Since then we have seen the scale of management and hence treatments reduce from farm-scale, down to field-scale, through to sub-field scale with varying expectations and benefits. This technology trend has continued to the point where we now have many smart controllers that allow the scale of treatment to be reduced further, down to the plant and even leaf scale. In doing so, these new methods of introducing smart controllers and automation have enabled the development of new concepts of practical crop management that were not feasible before. We now have levels of automation where we can consider the methods people used before large-scale machinery was introduced and see if these same methods can be utilised today using small smart machines. New concepts Many new concepts are being developed to allow agricultural automation to flourish and deliver its full potential. In some respects this needs a paradigm shift away from how we have done these tasks in the past to how we could do them using SSM (small smart machines). The current trend of machinery development is incremental where each new machine is a little better than the one before. This is a successful approach but one that ignores radical alternatives and opportunities. Take size for example. We have seen the continued increase in size and work rates of agricultural machines over the years, which to a large extent, can be highly beneficial as more work can be done by a reduced labour force, hence giving increased economy of scale but it also has a detrimental effect on the ability to deal with spatial and temporal variability. Many machines have been retrofitted with VRT controllers to help deal with this. An alternative approach can be taken by extending the vision to the point where the machine can work by itself, without constant human supervision. But if this radical scenario is to be fully developed it should take into account not only current problems but also identify potential opportunities. By taking this approach we can redefine the basic agronomic plant needs irrespective of the current machinery constraints and develop new SSMs that meet these needs alongside environmental care and economic prudence, health and safety, work directives and societal impacts, i.e. we start with a blank sheet and design the system of machines we need currently and those for the future. To take full advantage of these technologies, we should not just consider the implication of developing a new single technology but should look at the wider issues of a complete mechanisation system, including appropriate machinery management. To do this we have to consider all the impacts and implications but in doing so we need to define some of the systemic concepts that underlie the designs. This is not intended to be a recipe for developing new system but an explanation of some of the new concepts encountered.
When taking a systematic view of agricultural robotics, we can see there are many factors that will affect the final designs. Figure 1 shows a first attempt to define the numerous interactions.



Figure 1. How system environment affects agricultural robotics (from Blackmore, 2007)

The system in question is the mechanised support for growing crops which is increasingly becoming more automated and may lead to a system of agricultural robots. There would appear to be two sets of concepts developing: those that apply to the whole system (systemic) and those that describe the parts of the system (systematic). The next section describes new (and not so new) concepts from both perspectives.

Systemic concepts
These concepts deal with overarching ideas that impact the whole mechanisation sector.

Phytotechnology: This word was first used in this context by Shibusawa (1996) to describe machines that were better suited to dealing with individual plants. Tillett and Hague (1998) developed a similar conceptual approach called plant-scale husbandry in their weed spraying robot. This concept takes the emphasis away from the machine and work rates and focuses directly on plant needs – to develop an autonomous machine that can tend and care for each individual plant according to its needs. When plant requirements are defined independently of the machine that carries out the corresponding operations, this improved specification can be used in conjunction with mechatronic
principles to design smarter and more efficient machines.

Intelligently Targeted Inputs (ITI): Current machines do not usually use sensors or control systems to regulate what happens during field operations. They tend to use blanket treatments and in many cases it is quite difficult to achieve the desired levels of accuracy. Consequently this approach uses more inputs than are necessary. This leads to higher costs as well as environmental pollution. These inputs can be seen as energy inputs and many field operations can be equally categorized in the form of energy, such as the energy requirement to build the tractor, energy to make the chemicals and energy to fuel the machines. From both environmental and economic perspectives, this energy should be limited to a minimum of what is needed both in how it is delivered (there is not much point in having a 10 tonne tractor applying a few grams of chemical) and how it is targeted to the
right place at the right time in the right way to make best use of its potential and minimise
waste.

In some respects, this is nothing new; if a person were to establish, care for and harvest a number of valuable plants, they would instinctively try to understand the plants’ requirements and apply only those inputs which are needed by using perception and rationality. This is the precept of intelligently targeted inputs.

Zero draft force is another strange concept to many. We know that draft force is an important part of the way in which machines, particularly tractors, impart their energy to the soil in a horizontal manner. This is why tractors have large back wheels and heavy front weights. Many soil-engaging operations can be made draft force neutral or have a significantly reduced draft force requirement. Although we could never achieve ‘zero’ draft force due to the rolling resistance of the soil to the wheel, it can be reduced drastically by reducing overall machine weight. This gives a circular argument: the lower draft needs less weight which causes less compaction and less compaction needs less draft force energy requirement to break it up.

Zero compaction is the ability to carry out field operations without compacting soil, thus negating the requirement for more energy to reinstate soil structure. After lengthy consideration it now seems strange to run machines on top of the growing media and damage the soil that is there to grow plants – not support tractors. Again, this is not new and many techniques have been developed to help minimise soil damage by big tractors, especially controlled traffic. In the SSM system we need to know what maximum size of robot and hence ground pressure can be sustained before damage occurs. Even if some damage occurs self remediation can take place due to natural activity of native soil flora and fauna. If we can carry out field operations below this threshold then we may consider we have zero compaction.

Energetic autonomy is the ability of a machine to get its motive energy from its surroundings rather than from an imported energy source. The concept has been successfully trialled (Leropoulos et al., 2003; Kelly et al., 2000) and could be extended to include SSMs running a hybrid system of batteries and an engine run on biofuel grown and processed on-farm. As in the days of using horse power, land could be set aside to give motive energy requirements for the robots, thus giving a closed energy loop on the farm.



Figure 2. Agricultural energy flows

Usability is an important concept in the design and introduction of any new technology. In Precision Farming we (the scientists and engineers) made agriculture too complex for most farmers by introducing endless maps of differing soil and crop properties, without developing a clear method to use them for their own purposes. Any new technology must be intuitive and simple to use, without having long training courses and thick manuals.

Modularity should be incorporated at all levels of design from system architecture and software, right up to logistics and packaging. Given
Sedang diterjemahkan, harap tunggu..
Hasil (Bahasa Indonesia) 2:[Salinan]
Disalin!
Konsep baru dalam otomatisasi pertanian
Simon Blackmore
Pusat Riset dan Teknologi dari Thessaly, Yunani
simon@unibots.com Ringkasan Banyak teknologi otomatisasi pertanian baru sedang dikembangkan oleh para peneliti universitas yang menimbulkan pertanyaan tentang efisiensi dan efektivitas dengan yang kita melaksanakan praktek pertanian saat ini. Ini telah melahirkan banyak peluang baru untuk melayani kebutuhan agronomi meski dengan cara yang sangat berbeda dengan yang saat ini digunakan. Makalah ini menetapkan 41 konsep yang berkaitan dengan pekerjaan ini. Ada yang baru dan belum pernah dicoba; lain telah dibangun dan diuji dalam kondisi penelitian atau tradisional konsep yang telah ditinjau dalam terang peluang teknologi baru. Makalah ini bertujuan untuk meningkatkan kesadaran bahwa ada cara alternatif sekarang untuk mendukung sistem tanam; itu tidak dimaksudkan untuk memberikan pandangan definitif. Hanya waktu yang akan memberitahu mana yang menjadi sukses. Pendahuluan Perkembangan teknologi pertanian presisi pada 1990-an membuka cara baru berpikir tentang mekanisasi untuk perawatan tanaman. Memperkenalkan sejumlah konsep, yang meskipun tidak baru, membawa perubahan dalam pemikiran dan manajemen variabilitas. Dengan pemetaan hasil dan VRT (Perawatan Tingkat Variabel) skala spasial variabilitas bisa dibilang dinilai dan diperlakukan untuk pertama kalinya sejak mekanisasi pertama kali digunakan. Preprecision pertanian, manajer diasumsikan bahwa variabilitas spasial dan temporal ada tetapi tidak memiliki kemampuan atau alat untuk menghadapinya. Sejak itu kami telah melihat skala manajemen dan karenanya perawatan mengurangi dari peternakan skala, turun ke lapangan skala, melalui skala sub-bidang dengan berbagai harapan dan manfaat. Tren Teknologi ini terus ke titik di mana kita sekarang memiliki banyak cerdas pengendali yang memungkinkan skala pengobatan harus dikurangi lebih lanjut, ke pabrik dan bahkan skala daun. Dengan demikian, metode baru ini memperkenalkan kontroler cerdas dan otomatisasi telah memungkinkan pengembangan konsep baru pengelolaan tanaman praktis yang tidak layak sebelumnya. Kami sekarang memiliki tingkat otomatisasi mana kita dapat mempertimbangkan metode yang digunakan orang sebelum mesin skala besar diperkenalkan dan melihat apakah metode yang sama dapat digunakan saat menggunakan mesin pintar kecil. Konsep baru Banyak konsep-konsep baru yang dikembangkan untuk memungkinkan otomatisasi pertanian berkembang dan memberikan potensi penuh. Dalam beberapa hal ini perlu perubahan paradigma dari bagaimana kita telah melakukan tugas-tugas ini di masa lalu untuk bagaimana kita bisa melakukannya dengan menggunakan SSM (mesin pintar kecil). Kecenderungan saat ini pembangunan mesin adalah tambahan di mana setiap mesin baru ini sedikit lebih baik daripada yang sebelumnya. Ini adalah pendekatan yang sukses tapi satu yang mengabaikan alternatif radikal dan peluang. Ambil ukuran misalnya. Kita telah melihat terus meningkatnya tingkat ukuran dan kerja mesin pertanian selama bertahun-tahun, yang untuk sebagian besar, dapat sangat bermanfaat sebagai lebih banyak pekerjaan yang bisa dilakukan oleh tenaga kerja berkurang, sehingga memberikan peningkatan skala ekonomi tetapi juga memiliki efek yang merugikan pada kemampuan untuk menangani variabilitas spasial dan temporal. Banyak mesin telah dipasang dengan VRT kontroler untuk membantu mengatasi ini. Sebuah pendekatan alternatif dapat diambil dengan memperluas visi ke titik di mana mesin dapat bekerja dengan sendirinya, tanpa pengawasan manusia konstan. Tetapi jika skenario radikal ini dikembangkan sepenuhnya harus memperhitungkan tidak hanya masalah saat ini, tetapi juga mengidentifikasi peluang potensial. Dengan mengambil pendekatan ini kita dapat mendefinisikan kembali tanaman agronomi dasar kebutuhan terlepas dari kendala mesin saat ini dan mengembangkan SSMS baru yang memenuhi kebutuhan tersebut bersama perawatan lingkungan dan kehati-hatian ekonomi, kesehatan dan keselamatan, arahan kerja dan dampak sosial, yaitu kita mulai dengan selembar kosong dan merancang sistem mesin yang kita butuhkan saat ini dan orang-orang untuk masa depan. Untuk mengambil keuntungan penuh dari teknologi ini, kita seharusnya tidak hanya mempertimbangkan implikasi mengembangkan satu teknologi baru tapi harus melihat pada isu-isu yang lebih luas dari sistem mekanisasi lengkap, termasuk manajemen mesin yang sesuai. Untuk melakukan hal ini kita harus mempertimbangkan semua dampak dan implikasi tetapi dengan begitu kita perlu mendefinisikan beberapa konsep sistemik yang mendasari desain. Hal ini tidak dimaksudkan untuk menjadi resep untuk mengembangkan sistem baru tetapi penjelasan tentang beberapa konsep baru yang dihadapi. Saat mengambil pandangan sistematis robotika pertanian, kita bisa melihat ada banyak faktor yang akan mempengaruhi desain akhir. Gambar 1 menunjukkan upaya pertama untuk menentukan berbagai interaksi. Gambar 1. Bagaimana lingkungan sistem mempengaruhi robotika pertanian (dari Blackmore, 2007) Sistem yang dimaksud adalah dukungan mekanik untuk menanam tanaman yang semakin menjadi lebih otomatis dan dapat menyebabkan sistem robot pertanian. Ada akan muncul untuk menjadi dua set konsep pengembangan: orang-orang yang berlaku untuk seluruh sistem (sistemik) dan orang-orang yang menggambarkan bagian dari sistem (sistematis). Bagian selanjutnya menjelaskan konsep-konsep baru (dan tidak begitu baru) dari kedua perspektif. Konsep sistemik konsep ini berurusan dengan ide-ide yang menyeluruh yang mempengaruhi sektor mekanisasi seluruh. Phytotechnology: Kata ini pertama kali digunakan dalam konteks ini oleh Shibusawa (1996) untuk menggambarkan mesin yang yang lebih cocok untuk berurusan dengan individu tanaman. Tillett dan Den Haag (1998) mengembangkan pendekatan konseptual yang disebut pabrik skala peternakan serupa di rumput penyemprotan robot mereka. Konsep ini mengambil penekanan dari tingkat mesin dan bekerja dan berfokus langsung pada tanaman perlu - untuk mengembangkan mesin otonom yang dapat cenderung dan merawat setiap individu tanaman sesuai dengan kebutuhannya. Ketika persyaratan tanaman didefinisikan secara independen dari mesin yang melaksanakan operasi yang sesuai, spesifikasi ditingkatkan ini dapat digunakan bersama dengan mekatronika. Prinsip untuk merancang mesin cerdas dan lebih efisien cerdas Target Input (ITI): mesin sekarang biasanya tidak menggunakan sensor atau sistem kontrol untuk mengatur apa yang terjadi selama operasi lapangan. Mereka cenderung menggunakan perawatan selimut dan dalam banyak kasus sangat sulit untuk mencapai tingkat akurasi yang diinginkan. Akibatnya pendekatan ini menggunakan lebih masukan dari yang diperlukan. Hal ini menyebabkan biaya yang lebih tinggi serta pencemaran lingkungan. Masukan ini dapat dilihat sebagai input energi dan banyak operasi lapangan dapat sama-sama dikategorikan dalam bentuk energi, seperti kebutuhan energi untuk membangun traktor, energi untuk membuat bahan kimia dan energi untuk bahan bakar mesin. Dari kedua perspektif lingkungan dan ekonomi, energi ini harus dibatasi minimal apa yang dibutuhkan baik dalam bagaimana disampaikan (tidak ada gunanya memiliki traktor 10 ton menerapkan beberapa gram kimia) dan bagaimana ditargetkan yang tempat yang tepat pada waktu yang tepat dengan cara yang benar untuk membuat penggunaan terbaik dari potensi dan meminimalkan nya limbah. Dalam beberapa hal, ini bukan hal yang baru; jika seseorang adalah untuk membangun, merawat dan memanen sejumlah tanaman yang berharga, mereka secara naluriah akan mencoba untuk memahami kebutuhan tanaman dan berlaku hanya mereka masukan yang dibutuhkan dengan menggunakan persepsi dan rasionalitas. Ini adalah ajaran dari input cerdas ditargetkan. Nol rancangan kekuatan adalah konsep yang aneh bagi banyak orang. Kita tahu bahwa rancangan gaya merupakan bagian penting dari cara di mana mesin, terutama traktor, menanamkan energi mereka ke dalam tanah secara horizontal. Inilah sebabnya mengapa traktor memiliki roda belakang besar dan bobot depan berat. Banyak operasi tanah-menarik dapat dibuat rancangan kekuatan netral atau memiliki persyaratan rancangan kekuatan secara signifikan berkurang. Meskipun kita tidak pernah bisa mencapai 'nol' rancangan kekuatan karena rolling resistance dari tanah ke roda, itu dapat dikurangi secara drastis dengan mengurangi berat badan mesin secara keseluruhan. Hal ini memberikan argumen melingkar: rancangan yang lebih rendah perlu berat badan kurang yang menyebabkan kurang pemadatan dan kurang pemadatan kebutuhan kebutuhan energi rancangan kekuatan kurang untuk memecah itu. Nol pemadatan adalah kemampuan untuk melaksanakan operasi lapangan tanpa pemadatan tanah, sehingga meniadakan kebutuhan untuk lebih energi untuk mengembalikan struktur tanah. Setelah pertimbangan panjang sekarang tampaknya aneh untuk menjalankan mesin di atas media tumbuh dan merusak tanah yang ada untuk tumbuh tanaman - tidak mendukung traktor. Sekali lagi, ini bukan baru dan banyak teknik telah dikembangkan untuk membantu meminimalkan kerusakan tanah oleh traktor besar, lalu lintas terutama dikendalikan. Dalam sistem SSM kita perlu tahu apa ukuran robot dan tekanan maka tanah maksimum dapat dipertahankan sebelum kerusakan terjadi. Bahkan jika beberapa kerusakan terjadi perbaikan diri dapat terjadi akibat aktivitas alam flora dan fauna tanah asli. Jika kita dapat melakukan operasi lapangan di bawah ambang batas ini maka kita dapat mempertimbangkan kami memiliki nol pemadatan. Otonomi Energik adalah kemampuan mesin untuk mendapatkan energi motif nya dari lingkungannya dan bukan dari sumber energi yang diimpor. Konsep ini telah berhasil diuji coba (Leropoulos et al, 2003;.. Kelly et al, 2000) dan dapat diperpanjang untuk menyertakan SSMS menjalankan sistem hybrid baterai dan mesin berjalan pada biofuel tumbuh dan diproses on-farm. Seperti pada hari-hari menggunakan tenaga kuda, tanah bisa disisihkan untuk memberikan kebutuhan energi motif robot, sehingga memberikan loop energi tertutup di pertanian. Gambar 2. energi Pertanian mengalir Usability merupakan konsep penting dalam desain dan pengenalan setiap teknologi baru. Dalam Pertanian Presisi kita (para ilmuwan dan insinyur) membuat pertanian terlalu rumit bagi kebanyakan petani dengan memperkenalkan peta tak berujung berbeda sifat tanah dan tanaman, tanpa mengembangkan sebuah metode yang jelas untuk menggunakannya untuk tujuan mereka sendiri. Setiap teknologi baru harus intuitif dan mudah digunakan, tanpa kursus pelatihan yang panjang dan manual tebal. Modularity harus dimasukkan di semua tingkat desain dari arsitektur sistem dan perangkat lunak, sampai ke logistik dan kemasan. Mengingat


















































Sedang diterjemahkan, harap tunggu..
 
Bahasa lainnya
Dukungan alat penerjemahan: Afrikans, Albania, Amhara, Arab, Armenia, Azerbaijan, Bahasa Indonesia, Basque, Belanda, Belarussia, Bengali, Bosnia, Bulgaria, Burma, Cebuano, Ceko, Chichewa, China, Cina Tradisional, Denmark, Deteksi bahasa, Esperanto, Estonia, Farsi, Finlandia, Frisia, Gaelig, Gaelik Skotlandia, Galisia, Georgia, Gujarati, Hausa, Hawaii, Hindi, Hmong, Ibrani, Igbo, Inggris, Islan, Italia, Jawa, Jepang, Jerman, Kannada, Katala, Kazak, Khmer, Kinyarwanda, Kirghiz, Klingon, Korea, Korsika, Kreol Haiti, Kroat, Kurdi, Laos, Latin, Latvia, Lituania, Luksemburg, Magyar, Makedonia, Malagasi, Malayalam, Malta, Maori, Marathi, Melayu, Mongol, Nepal, Norsk, Odia (Oriya), Pashto, Polandia, Portugis, Prancis, Punjabi, Rumania, Rusia, Samoa, Serb, Sesotho, Shona, Sindhi, Sinhala, Slovakia, Slovenia, Somali, Spanyol, Sunda, Swahili, Swensk, Tagalog, Tajik, Tamil, Tatar, Telugu, Thai, Turki, Turkmen, Ukraina, Urdu, Uyghur, Uzbek, Vietnam, Wales, Xhosa, Yiddi, Yoruba, Yunani, Zulu, Bahasa terjemahan.

Copyright ©2024 I Love Translation. All reserved.

E-mail: