3.2.2. Chlorogenic acid contentThe most abundant phenolic compounds in terjemahan - 3.2.2. Chlorogenic acid contentThe most abundant phenolic compounds in Bahasa Indonesia Bagaimana mengatakan

3.2.2. Chlorogenic acid contentThe

3.2.2. Chlorogenic acid content
The most abundant phenolic compounds in coffee are chlorogenic acids (CGA) (Bicho, Oliveira, Lidon, Ramalho, & Leitão, 2011b; Trugo & Macrae, 1984). Total CGA ranged from 11.6 mg g−1 for the coffee
blend in a sealed package with a one-way degassing-valve to 13.3 mg g−1 for the functional coffee blend (Table 6). That suggests a CGA loss close to 80% during the roasting process, as compared with the values presented elsewhere for green bean (Bicho et al., 2013a). This CGA loss is somewhat higher than that found by Trugo & Macrae (1984), which pointed to losses ofca. 60% upon mild roasting conditions, or byCorreia, Leitao, & Clifford (1995), which found a degradation between 52 and 77% with extended roasting. Furthermore, differences in the degradation rates of the individual isomers were found, with the stronger losses for CQAs and diCQAs, whereas the opposite occurred with FQAs. In fact, 5-CQA seems to be the chlorogenic acid with higher reduction rates triggered by roasting (Farah, de Paulis, Trugo, & Martin, 2005). Such roasting dependency was also found for other compounds, namely N-β-caffeoyl-tyrosine and p-coumaroyl-N-tyrosine, which resist better to the medium roast than the other CGA (Correia et al., 1995). Therefore, roasting intensity can induce a direct influence on theflavor of thefinal product, as the individual isomers have different sensory properties (Bicho et al., 2013b; Correia et al., 1995; Trugo & Macrae, 1984). Apart from the degree of coffee roasting, the CGA content in the beverage is also species influenced, as their values are higher in Robusta than in Arabica coffee (Ky et al., 2001). The results suggest that the blends had a total CGA content (Table 6) characteristic of industrial medium roasts, where temperature was slightly lower but with a significantly higher roasting time (Correia et al., 1995). The full content of CGA detected in golden coffee was 23.0 mg g−1 (Correia et al., 1995), therefore less than in green coffee of the same species and origin (71.7 mg g−1). Although being a minimally processed product, it shows a significant reduction of CGA, but in a much less extent than
that provoked by the roasting process. Amongst the chlorogenic acids types, considering the total CQAs, FQAs and diCQAs values, only the functional coffee blend showed a higher content when compared to
the coffee blend in a sealed package with one-way degassing-valve and commercial coffee blend in capsules, what was therefore slight reflected in the total CGA content. Typically the content of CGA of the beverages, with 10 g of roasted and ground coffee added to 200 mL of water, can vary between 20
and 300 mg (Richelle, Tavazzi, & Offord, 2001), whereas coffee beverages subjected to dark roasts might show a content varying between 5.26 and 17.1 mg g−1 (Fujioka & Shibamoto, 2008). Yet, that can also
be affected by the beverage producing system. In fact, in the functional coffee blend there was a consistent tendency to a better extraction of all CGAs by DQOOL, when compared to the performance of the Briel machines. Also, all the CGA were more concentrated in the functional coffee blend relative to the commercial coffee blends in capsules obtained in the DQOOL. Using the Briel machine, the beverages of the functional coffee blend also showed a higher content of total CGA (Table 7), relative to the coffee blend in a sealed package with a oneway degassing-valve (although that difference arises only from a few chlorogenic acids, mostly from 5-CQA). Additionally, the beverage of the functional coffee blend had a higher content of total CGA when compared to the commercial coffee blend in capsules (with DQOOL) and the coffee blend in a sealed package with one-way degassing-valve (with Briel), following a close tendency to that observed for the solid samples (Table 6).

3.3. Beverage antioxidant capacity
The antioxidant activity and total polyphenol content, expressed in GAE (Fig. 1), revealed similar trends irrespective of the used analytical method. There were significant differences between the ground roasted coffee blends, with the contents ranging from 39.8 to 50.9 mg of gallic acid equivalents g−1
, with a significantly higher content in CCBC, relatively to FCB and CBSP. The values were consistent with those obtained byBrezová,Šlebodová, & Staško, (2009). Note that, an increased antioxidant activity was observed after roasting (Sánchez-González, Jiménez-Escrig, & Saura-Calixto, 2005), since, although some natural antioxidants are eliminated during the heating, the antioxidant properties of the coffee beverage can be maintained or improved by the formation of new antioxidants (Napolitano, Fogliano, Tafuri, & Ritieni, 2007; Vignoli, Bassoli, & Benassi, 2011). Although a cup of coffee (180 mL) can contain about 396 mg of polyphenols (Bonita et al., 2007), the polyphenol content in a cup of espresso coffee (25 mL) ranged between 197.3 mg (from the coffee blend in a sealed package with one-way degassing valve extraction by the Briel machine) and 283.0 mg (from the commercial coffee blends in capsules extraction by the capsules in the machine DQOOL) (Table 8). The efficiency of the extraction is linked to the pressure of the equipment and the capacity of extraction of soluble solids and antioxidant compounds to the beverage. The machine DQOOL was more efficient in the extraction of phenolic compounds and other bioactive compounds capable of removing free radicals by the 2,2-azinobis (3-ethylbenzo-thiazoline-6-sulphonic acid) diammonium salt (ABTS) and 2,2-diphenil-1-picrylhydrazyl (DPPH) methods. The La Cimbali (professional machine; modelM27, Italy), used in this assay, had the second best extraction, with Briel displaying the lowest values. Amongst the coffee beverages, the commercial coffee blends in capsules obtained from DQOOL showed a higher content of total polyphenols, what might be linked to its relativelyfiner grain size (Table 4). Moreover, the ability of the coffee blend samples and beverages to scavenge radicals of ABTS and DPPH showed only small differences, pointing for similar conclusions. Therefore, considering the three determination methods, it is shown that the functional coffee blend presents similar antioxidant activity to the most consumed coffee blend in a sealed package with one-way degassing-valve and with the commercial coffee blend in capsules. Yet, the values given by the Folin–Ciocalteau method reached a maximal value of 43.5 mg of gallic acid equivalents g−1 dwfor the commercial coffee blend in capsules extracted in DQOOL (considering a 25 mL espresso, from 6.5 g of blend), which is below those present in other works (Balasundram, Sundram, & Samman, 2006; Vignoli et al., 2011)

3.4. Sensory analysis
The selection of the ingredients to thefinal blend considered several percentages and the different ingredients added to the coffee through approval tests offlavors. It has been found that the combination of cocoa with coffee has a positive result when added in a small percentage. To optimize the blend formulation, different preliminary tests were made, equating grinding systems and features of extraction. Accordingly, considering all the analyzed attributes, on a scale of 1 to 5, it was classified with an average of 4.1. The judges (C_1 to C_11) of the sensory panel found that the beverage of espresso coffee in this study revealed characteristics that demonstrate its quality in relation to gustatory, olfactory and visual impressions (Fig. 2). The lower results focused on the body,flavor, aftertaste and persistence (with an average of 3.5). This sensory analysis assisted the development of a product that is
based on the selection of the origins, different roasting degrees (medium–light and medium), several percentages of the different species of Arabica and Robusta coffee and the combination with cocoa. The coffee blend formulation was done gradually with introduction of the value to the product, with approvals and disapprovals of ingredients and with optimized technology for the success of thefinal formulation. Several semi-finished products were developed, tested and considered through
sensory analysis, to obtain the functional coffee blend that was approved by consumers who attributed the formulation results in a positive hedonic scale of appreciation. The panel of tasters rated the
product within the parameters usually used for espresso coffee, evaluating and considering it within the corresponding standards to the sensory attributes tested (Fig. 2).

3.5. Ochratoxin A analysis
Ochratoxin A, a toxin produced byAspergillus ochraceus, Aspergillus carbonariusandPenicillium verrucosum, is one of the most abundant food-contaminating mycotoxins (Al-Anati & Petzinger, 2006). Coffee can introduce ochratoxin A in the diet since his fungi producers can colonize the green coffee beans and then be transferred, after roasting and milling, to the coffee beverages. Accordingly, ochratoxin A is potentially carcinogenic to humans, has a strong affinity for the brain, especially the
cerebellum (Purkinje cells), ventral mesencephalon and hippocampal structures (Belmadani et al., 1999) and, additionally, can cause immunosuppression and immunotoxicity (Al-Anati & Petzinger, 2006).
Ochratoxin A was not detected in the functional coffee blend stored at room temperature, indicating good manufacturing practices in the selection of green coffee, as well as roasting and storage of the coffee, cocoa and by-products incorporated in the blend, showing that the resulting espresso beverage was safe to consumers.
4. Conclusions
The functional coffee blend is comprised of roasted coffee (94%), containing 30% Arabica coffee of medium roast from East-Timor, Brazil and Honduras, and 70% Robusta coffee with medium–light roast, from Angola and Cameroon. Besides the roasted coffee, the functional coffee blend has in its composition 3% of cocoa, 2% of silverskin and 1% of golden c
0/5000
Dari: -
Ke: -
Hasil (Bahasa Indonesia) 1: [Salinan]
Disalin!
3.2.2. klorogenat asam kontenSenyawa fenolik yang paling berlimpah di kopi adalah asam klorogenat (CGA) (Bicho, Oliveira, Lidon, Ramalho, & Leitão, 2011b; Trugo & Macrae, 1984). Total CGA berkisar dari 11.6 mg g−1 untuk kopiblend in a sealed package with a one-way degassing-valve to 13.3 mg g−1 for the functional coffee blend (Table 6). That suggests a CGA loss close to 80% during the roasting process, as compared with the values presented elsewhere for green bean (Bicho et al., 2013a). This CGA loss is somewhat higher than that found by Trugo & Macrae (1984), which pointed to losses ofca. 60% upon mild roasting conditions, or byCorreia, Leitao, & Clifford (1995), which found a degradation between 52 and 77% with extended roasting. Furthermore, differences in the degradation rates of the individual isomers were found, with the stronger losses for CQAs and diCQAs, whereas the opposite occurred with FQAs. In fact, 5-CQA seems to be the chlorogenic acid with higher reduction rates triggered by roasting (Farah, de Paulis, Trugo, & Martin, 2005). Such roasting dependency was also found for other compounds, namely N-β-caffeoyl-tyrosine and p-coumaroyl-N-tyrosine, which resist better to the medium roast than the other CGA (Correia et al., 1995). Therefore, roasting intensity can induce a direct influence on theflavor of thefinal product, as the individual isomers have different sensory properties (Bicho et al., 2013b; Correia et al., 1995; Trugo & Macrae, 1984). Apart from the degree of coffee roasting, the CGA content in the beverage is also species influenced, as their values are higher in Robusta than in Arabica coffee (Ky et al., 2001). The results suggest that the blends had a total CGA content (Table 6) characteristic of industrial medium roasts, where temperature was slightly lower but with a significantly higher roasting time (Correia et al., 1995). The full content of CGA detected in golden coffee was 23.0 mg g−1 (Correia et al., 1995), therefore less than in green coffee of the same species and origin (71.7 mg g−1). Although being a minimally processed product, it shows a significant reduction of CGA, but in a much less extent thanthat provoked by the roasting process. Amongst the chlorogenic acids types, considering the total CQAs, FQAs and diCQAs values, only the functional coffee blend showed a higher content when compared tothe coffee blend in a sealed package with one-way degassing-valve and commercial coffee blend in capsules, what was therefore slight reflected in the total CGA content. Typically the content of CGA of the beverages, with 10 g of roasted and ground coffee added to 200 mL of water, can vary between 20and 300 mg (Richelle, Tavazzi, & Offord, 2001), whereas coffee beverages subjected to dark roasts might show a content varying between 5.26 and 17.1 mg g−1 (Fujioka & Shibamoto, 2008). Yet, that can alsobe affected by the beverage producing system. In fact, in the functional coffee blend there was a consistent tendency to a better extraction of all CGAs by DQOOL, when compared to the performance of the Briel machines. Also, all the CGA were more concentrated in the functional coffee blend relative to the commercial coffee blends in capsules obtained in the DQOOL. Using the Briel machine, the beverages of the functional coffee blend also showed a higher content of total CGA (Table 7), relative to the coffee blend in a sealed package with a oneway degassing-valve (although that difference arises only from a few chlorogenic acids, mostly from 5-CQA). Additionally, the beverage of the functional coffee blend had a higher content of total CGA when compared to the commercial coffee blend in capsules (with DQOOL) and the coffee blend in a sealed package with one-way degassing-valve (with Briel), following a close tendency to that observed for the solid samples (Table 6).3.3. Beverage antioxidant capacityThe antioxidant activity and total polyphenol content, expressed in GAE (Fig. 1), revealed similar trends irrespective of the used analytical method. There were significant differences between the ground roasted coffee blends, with the contents ranging from 39.8 to 50.9 mg of gallic acid equivalents g−1, with a significantly higher content in CCBC, relatively to FCB and CBSP. The values were consistent with those obtained byBrezová,Šlebodová, & Staško, (2009). Note that, an increased antioxidant activity was observed after roasting (Sánchez-González, Jiménez-Escrig, & Saura-Calixto, 2005), since, although some natural antioxidants are eliminated during the heating, the antioxidant properties of the coffee beverage can be maintained or improved by the formation of new antioxidants (Napolitano, Fogliano, Tafuri, & Ritieni, 2007; Vignoli, Bassoli, & Benassi, 2011). Although a cup of coffee (180 mL) can contain about 396 mg of polyphenols (Bonita et al., 2007), the polyphenol content in a cup of espresso coffee (25 mL) ranged between 197.3 mg (from the coffee blend in a sealed package with one-way degassing valve extraction by the Briel machine) and 283.0 mg (from the commercial coffee blends in capsules extraction by the capsules in the machine DQOOL) (Table 8). The efficiency of the extraction is linked to the pressure of the equipment and the capacity of extraction of soluble solids and antioxidant compounds to the beverage. The machine DQOOL was more efficient in the extraction of phenolic compounds and other bioactive compounds capable of removing free radicals by the 2,2-azinobis (3-ethylbenzo-thiazoline-6-sulphonic acid) diammonium salt (ABTS) and 2,2-diphenil-1-picrylhydrazyl (DPPH) methods. The La Cimbali (professional machine; modelM27, Italy), used in this assay, had the second best extraction, with Briel displaying the lowest values. Amongst the coffee beverages, the commercial coffee blends in capsules obtained from DQOOL showed a higher content of total polyphenols, what might be linked to its relativelyfiner grain size (Table 4). Moreover, the ability of the coffee blend samples and beverages to scavenge radicals of ABTS and DPPH showed only small differences, pointing for similar conclusions. Therefore, considering the three determination methods, it is shown that the functional coffee blend presents similar antioxidant activity to the most consumed coffee blend in a sealed package with one-way degassing-valve and with the commercial coffee blend in capsules. Yet, the values given by the Folin–Ciocalteau method reached a maximal value of 43.5 mg of gallic acid equivalents g−1 dwfor the commercial coffee blend in capsules extracted in DQOOL (considering a 25 mL espresso, from 6.5 g of blend), which is below those present in other works (Balasundram, Sundram, & Samman, 2006; Vignoli et al., 2011)3.4. Sensory analysisThe selection of the ingredients to thefinal blend considered several percentages and the different ingredients added to the coffee through approval tests offlavors. It has been found that the combination of cocoa with coffee has a positive result when added in a small percentage. To optimize the blend formulation, different preliminary tests were made, equating grinding systems and features of extraction. Accordingly, considering all the analyzed attributes, on a scale of 1 to 5, it was classified with an average of 4.1. The judges (C_1 to C_11) of the sensory panel found that the beverage of espresso coffee in this study revealed characteristics that demonstrate its quality in relation to gustatory, olfactory and visual impressions (Fig. 2). The lower results focused on the body,flavor, aftertaste and persistence (with an average of 3.5). This sensory analysis assisted the development of a product that isbased on the selection of the origins, different roasting degrees (medium–light and medium), several percentages of the different species of Arabica and Robusta coffee and the combination with cocoa. The coffee blend formulation was done gradually with introduction of the value to the product, with approvals and disapprovals of ingredients and with optimized technology for the success of thefinal formulation. Several semi-finished products were developed, tested and considered throughsensory analysis, to obtain the functional coffee blend that was approved by consumers who attributed the formulation results in a positive hedonic scale of appreciation. The panel of tasters rated theproduct within the parameters usually used for espresso coffee, evaluating and considering it within the corresponding standards to the sensory attributes tested (Fig. 2).3.5. Ochratoxin A analysisOchratoxin A, a toxin produced byAspergillus ochraceus, Aspergillus carbonariusandPenicillium verrucosum, is one of the most abundant food-contaminating mycotoxins (Al-Anati & Petzinger, 2006). Coffee can introduce ochratoxin A in the diet since his fungi producers can colonize the green coffee beans and then be transferred, after roasting and milling, to the coffee beverages. Accordingly, ochratoxin A is potentially carcinogenic to humans, has a strong affinity for the brain, especially thecerebellum (Purkinje cells), ventral mesencephalon and hippocampal structures (Belmadani et al., 1999) and, additionally, can cause immunosuppression and immunotoxicity (Al-Anati & Petzinger, 2006).Ochratoxin A was not detected in the functional coffee blend stored at room temperature, indicating good manufacturing practices in the selection of green coffee, as well as roasting and storage of the coffee, cocoa and by-products incorporated in the blend, showing that the resulting espresso beverage was safe to consumers.4. Conclusions
The functional coffee blend is comprised of roasted coffee (94%), containing 30% Arabica coffee of medium roast from East-Timor, Brazil and Honduras, and 70% Robusta coffee with medium–light roast, from Angola and Cameroon. Besides the roasted coffee, the functional coffee blend has in its composition 3% of cocoa, 2% of silverskin and 1% of golden c
Sedang diterjemahkan, harap tunggu..
Hasil (Bahasa Indonesia) 2:[Salinan]
Disalin!
3.2.2. Kandungan asam klorogenat
Senyawa fenolik yang paling melimpah di kopi adalah asam chlorogenic (CGA) (Bicho, Oliveira, Lidon, Ramalho, & Leitão, 2011b; Trugo & Macrae, 1984). Total CGA berkisar antara 11,6 mg g-1 untuk kopi
campuran dalam paket tertutup dengan satu arah degassing-katup 13,3 mg g-1 untuk campuran kopi fungsional (Tabel 6). Itu menunjukkan kerugian CGA hampir 80% selama proses pemanggangan, dibandingkan dengan nilai-nilai yang disajikan di tempat lain untuk kacang hijau (Bicho et al., 2013a). Loss CGA ini agak lebih tinggi daripada yang ditemukan oleh Trugo & Macrae (1984), yang menunjukkan kerugian ofca. 60% pada kondisi memanggang ringan, atau byCorreia, Leitao, & Clifford (1995), yang menemukan degradasi antara 52 dan 77% dengan memanggang diperpanjang. Selanjutnya, perbedaan dalam tingkat degradasi isomer individu yang ditemukan, dengan kerugian yang lebih kuat untuk CQAs dan diCQAs, sedangkan sebaliknya terjadi dengan FQAs. Bahkan, 5-CQA tampaknya menjadi asam klorogenat dengan tarif yang lebih tinggi pengurangan dipicu oleh memanggang (Farah, de Paulis, Trugo, & Martin, 2005). Memanggang ketergantungan tersebut juga ditemukan untuk senyawa lainnya, yaitu N-β-caffeoyl-tirosin dan p-coumaroyl-N-tirosin, yang menolak lebih baik untuk panggang menengah dari yang lain CGA (Correia et al., 1995). Oleh karena itu, memanggang intensitas dapat menyebabkan pengaruh langsung terhadap theflavor produk thefinal, sebagai isomer individu memiliki sifat sensori yang berbeda (Bicho et al, 2013b;.. Correia et al, 1995; Trugo & Macrae, 1984). Terlepas dari tingkat kopi memanggang, kandungan CGA dalam minuman juga spesies dipengaruhi, sebagai nilai-nilai mereka lebih tinggi di Robusta dibandingkan kopi Arabika (Ky et al., 2001). Hasil penelitian menunjukkan bahwa campuran memiliki total CGA konten (Tabel 6) karakteristik daging panggang menengah industri, di mana suhu sedikit lebih rendah tetapi dengan jauh lebih tinggi waktu pemanggangan (Correia et al., 1995). Isi penuh CGA terdeteksi dalam kopi emas adalah 23,0 mg g-1 (Correia et al., 1995), oleh karena itu kurang dari kopi hijau spesies dan asal (71,7 mg g-1) yang sama. Meskipun menjadi produk minimal diproses, itu menunjukkan penurunan yang signifikan dari CGA, tetapi dalam tingkat yang jauh kurang dari
yang dipicu oleh proses pemanggangan. Di antara jenis asam chlorogenic, mengingat total CQAs, FQAs dan diCQAs nilai, hanya campuran kopi fungsional menunjukkan konten yang lebih tinggi bila dibandingkan dengan
campuran kopi dalam paket tertutup dengan satu arah degassing-valve dan campuran kopi komersial dalam bentuk kapsul, apa Oleh karena itu sedikit tercermin dalam total konten CGA. Biasanya isi CGA dari minuman, dengan 10 g panggang dan kopi bubuk yang ditambahkan ke 200 ml air, dapat bervariasi antara 20
dan 300 mg (Richelle, Tavazzi, & Offord, 2001), sedangkan minuman kopi mengalami panggang gelap mungkin menunjukkan konten yang bervariasi antara 5,26 dan 17,1 mg g-1 (Fujioka & Shibamoto, 2008). Namun, yang juga dapat
dipengaruhi oleh minuman memproduksi sistem. Bahkan, dalam campuran kopi fungsional ada kecenderungan yang konsisten untuk ekstraksi yang lebih baik dari semua CGAs oleh DQOOL, bila dibandingkan dengan kinerja mesin Briel. Juga, semua CGA lebih terkonsentrasi di kopi campuran relatif fungsional untuk campuran kopi komersial dalam kapsul yang diperoleh di DQOOL tersebut. Menggunakan mesin Briel, minuman dari campuran kopi fungsional juga menunjukkan kandungan yang lebih tinggi dari jumlah CGA (Tabel 7), relatif terhadap campuran kopi dalam paket tertutup dengan degassing-valve oneway (meskipun perbedaan yang timbul hanya dari beberapa chlorogenic asam, sebagian besar dari 5-CQA). Selain itu, minuman dari campuran kopi fungsional memiliki kandungan yang lebih tinggi dari jumlah CGA bila dibandingkan dengan campuran komersial kopi di kapsul (dengan DQOOL) dan campuran kopi dalam paket tertutup dengan satu arah degassing-valve (dengan Briel), berikut kecenderungan dekat dengan yang diamati untuk sampel padat (Tabel 6). 3.3. Minuman kapasitas antioksidan Aktivitas antioksidan dan kandungan polifenol total, dinyatakan dalam GAE (Gbr. 1), mengungkapkan kecenderungan yang sama terlepas dari metode analisis yang digunakan. Ada perbedaan yang signifikan antara tanah panggang campuran kopi, dengan isi mulai 39,8-50,9 mg asam galat Setara-g 1 , dengan kandungan lebih tinggi secara signifikan di CCBC, relatif ke FCB dan CBSP. Nilai-nilai yang konsisten dengan yang diperoleh byBrezová, Šlebodová, & Staško, (2009). Perhatikan bahwa, suatu aktivitas antioksidan meningkat diamati setelah memanggang (Sánchez-González, Jiménez-Escrig, & Saura-Calixto, 2005), karena, meskipun beberapa antioksidan alami dieliminasi selama pemanasan, sifat antioksidan dari minuman kopi dapat dipertahankan atau ditingkatkan dengan pembentukan antioksidan baru (Napolitano, Fogliano, Tafuri, & Ritieni, 2007; Vignoli, BASSOLI, & Benassi, 2011). Meskipun secangkir kopi (180 ml) dapat mengandung sekitar 396 mg polifenol (Bonita et al., 2007), kandungan polifenol dalam secangkir kopi espresso (25 ml) berkisar antara 197,3 mg (dari campuran kopi di disegel paket dengan katup satu arah degassing ekstraksi oleh mesin Briel) dan 283,0 mg (dari campuran kopi komersial ekstraksi kapsul oleh kapsul dalam mesin DQOOL) (Tabel 8). Efisiensi ekstraksi ini terkait dengan tekanan peralatan dan kapasitas ekstraksi padatan terlarut dan senyawa antioksidan untuk minuman. Mesin DQOOL lebih efisien dalam ekstraksi senyawa fenolik dan senyawa bioaktif lain yang mampu menghilangkan radikal bebas oleh 2,2-azinobis (asam 3-ethylbenzo thiazoline-6-sulfonat) garam diamonium (ABTS) dan 2,2- diphenil-1-pikrilhidrazil (DPPH) metode. La Cimbali (mesin profesional, modelM27, Italia), yang digunakan dalam pengujian ini, memiliki ekstraksi terbaik kedua, dengan Briel menampilkan nilai terendah. Di antara minuman kopi, campuran kopi komersial dalam kapsul yang diperoleh dari DQOOL menunjukkan kandungan yang lebih tinggi dari jumlah polifenol, apa yang mungkin terkait dengan ukuran butir relativelyfiner (Tabel 4). Selain itu, kemampuan sampel kopi campuran dan minuman untuk mengikat radikal dari ABTS dan DPPH menunjukkan hanya perbedaan kecil, menunjuk untuk kesimpulan yang sama. Oleh karena itu, mengingat tiga metode penentuan, terlihat bahwa campuran kopi fungsional menyajikan aktivitas antioksidan mirip dengan kopi campuran yang paling dikonsumsi dalam paket tertutup dengan satu arah degassing-katup dan dengan campuran kopi komersial dalam kapsul. Namun, nilai yang diberikan dengan metode Folin-Ciocalteau mencapai nilai maksimal dari 43,5 mg asam galat Setara-g 1 dwfor campuran kopi komersial dalam kapsul diekstrak di DQOOL (mempertimbangkan espresso 25 mL, dari 6,5 g campuran), yang di bawah mereka yang hadir dalam karya-karya lainnya; (Balasundram, Sundram, & Samman 2006 Vignoli et al, 2011). 3.4. Analisis sensori Pemilihan bahan untuk campuran thefinal mempertimbangkan beberapa persentase dan bahan-bahan yang berbeda ditambahkan ke kopi melalui tes persetujuan offlavors. Telah ditemukan bahwa kombinasi kakao dengan kopi memiliki hasil positif ketika ditambahkan dalam persentase kecil. Untuk mengoptimalkan formulasi campuran, tes awal yang berbeda dibuat, menyamakan sistem grinding dan fitur ekstraksi. Oleh karena itu, mengingat semua atribut yang dianalisis, pada skala 1 sampai 5, itu diklasifikasikan dengan rata-rata 4,1. Para hakim (C_1 ke C_11) dari panel sensorik menemukan bahwa minuman kopi espresso dalam penelitian ini menunjukkan karakteristik yang menunjukkan kualitas dalam kaitannya dengan gustatory, penciuman dan penglihatan tayangan (Gbr. 2). Hasil yang lebih rendah difokuskan pada tubuh, rasa, aftertaste dan ketekunan (dengan rata-rata 3,5). Analisis sensori ini membantu pengembangan produk yang didasarkan pada pemilihan asal-usul, derajat yang berbeda pemanggangan (menengah-ringan dan sedang), beberapa persentase dari spesies yang berbeda dari kopi Arabika dan Robusta dan kombinasi dengan kakao. Formulasi coffee blend dilakukan secara bertahap dengan pengenalan nilai produk, dengan persetujuan dan penolakan dari bahan dan dengan teknologi dioptimalkan untuk keberhasilan formulasi thefinal. Beberapa produk setengah jadi dikembangkan, diuji dan dipertimbangkan melalui analisis sensorik, untuk memperoleh campuran kopi fungsional yang telah disetujui oleh konsumen yang disebabkan hasil formulasi dalam skala hedonis positif apresiasi. Panel dari campur sari diberi nilai produk dalam parameter biasanya digunakan untuk kopi espresso, mengevaluasi dan mempertimbangkan dalam standar yang sesuai dengan atribut sensorik diuji (Gambar. 2). 3.5. Ochratoxin Analisis Ochratoxin A, racun yang dihasilkan byAspergillus ochraceus, Aspergillus carbonariusandPenicillium verrucosum, adalah salah satu yang paling berlimpah mikotoksin makanan mencemari (Al-Anati & Petzinger, 2006). Kopi dapat memperkenalkan ochratoxin A dalam makanan karena produsen jamur nya dapat menjajah biji kopi hijau dan kemudian ditransfer, setelah memanggang dan penggilingan, dengan minuman kopi. Oleh karena itu, ochratoxin A berpotensi karsinogenik bagi manusia, memiliki afinitas yang kuat untuk otak, terutama otak kecil (sel Purkinje), mesencephalon ventral dan struktur hipokampus (Belmadani et al., 1999) dan, sebagai tambahan, dapat menyebabkan imunosupresi dan imunotoksisitas (Al -Anati & Petzinger, 2006). Ochratoxin A tidak terdeteksi dalam campuran kopi fungsional disimpan pada suhu kamar, yang menunjukkan praktek-praktek manufaktur yang baik dalam pemilihan kopi hijau, serta memanggang dan penyimpanan kopi, kakao dan produk dimasukkan dalam campuran, menunjukkan bahwa minuman espresso yang dihasilkan aman untuk konsumen. 4. Kesimpulan Campuran kopi fungsional terdiri dari kopi panggang (94%), mengandung 30% kopi Arabika dari panggang menengah dari Timur-Timor, Brasil dan Honduras, dan 70% kopi robusta dengan media cahaya panggang, dari Angola dan Kamerun. Selain kopi panggang, campuran kopi fungsional memiliki dalam komposisi 3% kakao, 2% dari silverskin dan 1% dari emas c
















Sedang diterjemahkan, harap tunggu..
 
Bahasa lainnya
Dukungan alat penerjemahan: Afrikans, Albania, Amhara, Arab, Armenia, Azerbaijan, Bahasa Indonesia, Basque, Belanda, Belarussia, Bengali, Bosnia, Bulgaria, Burma, Cebuano, Ceko, Chichewa, China, Cina Tradisional, Denmark, Deteksi bahasa, Esperanto, Estonia, Farsi, Finlandia, Frisia, Gaelig, Gaelik Skotlandia, Galisia, Georgia, Gujarati, Hausa, Hawaii, Hindi, Hmong, Ibrani, Igbo, Inggris, Islan, Italia, Jawa, Jepang, Jerman, Kannada, Katala, Kazak, Khmer, Kinyarwanda, Kirghiz, Klingon, Korea, Korsika, Kreol Haiti, Kroat, Kurdi, Laos, Latin, Latvia, Lituania, Luksemburg, Magyar, Makedonia, Malagasi, Malayalam, Malta, Maori, Marathi, Melayu, Mongol, Nepal, Norsk, Odia (Oriya), Pashto, Polandia, Portugis, Prancis, Punjabi, Rumania, Rusia, Samoa, Serb, Sesotho, Shona, Sindhi, Sinhala, Slovakia, Slovenia, Somali, Spanyol, Sunda, Swahili, Swensk, Tagalog, Tajik, Tamil, Tatar, Telugu, Thai, Turki, Turkmen, Ukraina, Urdu, Uyghur, Uzbek, Vietnam, Wales, Xhosa, Yiddi, Yoruba, Yunani, Zulu, Bahasa terjemahan.

Copyright ©2024 I Love Translation. All reserved.

E-mail: