The Centers forDisease Control and Prevention have also used self-repo terjemahan - The Centers forDisease Control and Prevention have also used self-repo Bahasa Indonesia Bagaimana mengatakan

The Centers forDisease Control and

The Centers for
Disease Control and Prevention have also used self-reported height and weight data from the
US Behavioral Risk Factor Surveillance System (BRFSS) to estimate county-level
prevalence of obesity. Counties with the highest prevalence of obesity were concentrated in
West Virginia, the Appalachian counties of Tennessee and Kentucky, much of the
Mississippi Delta, and the southern belt extending across Louisiana, Mississippi, middle
Alabama, south Georgia and the coastal regions of the Carolinas(5). However the authors
noted limitations of both national surveillance mechanisms, including small sample size in
sex and age strata for NHANES and potential response bias in the BRFSS.
Despite a moderate degree of selection bias due to volunteer bias and health criteria, blood
donors provide a potential population for the ongoing surveillance of obesity and other
health-related risk factors. Certainly such data have been useful in surveillance for HIV and
West Nile virus(6,7). Data on large numbers of individuals are available from across the
USA, and data are available continuously as opposed to episodic surveys. We are not aware
of published data on BMI distributions among blood donors. Such information may be
useful for public health surveillance, and also because body mass criteria are used to define
eligibility for certain types of blood collection (e.g. double red cell donation) and prevention
of syncopal reactions.
We therefore used data from a large, multicentre consortium of US blood centres to perform
a descriptive analysis of BMI. Although the prevalence of obesity was modestly lower
among blood donors compared with the general US population, demographic and
geographic differences were observed that may be useful to ongoing public health
surveillance.
Methods
Study population
The Retrovirus Epidemiology in Donors Study II (REDS-II) is a multicentre consortium of
six blood centres located across the USA (see Table 1 and Appendix) which share data on
all blood donations at their centres in a centralized research database. We included data on
all successful allogeneic blood donations from donors at the six REDS-II centres from
January 2007 to December 2008. All donors were unremunerated volunteers. Autologous
(those who donate for themselves) and therapeutic (those who are phlebotomized for
medical indications) blood donations were excluded. Whole blood, double red cell and
platelet apheresis donations were included. Donors who gave more than one donation during
the study period contributed only one observation, namely data recorded at their first
donation. Prospective blood donors weighing less than 110 lb (50 kg) are deferred from
blood donation, as are donors under the age of 18 years who fail more stringent weight requirements and individuals with various medical or behavioural risks to safe blood
donation, as reported previously(8–10). Deferred donors were not included in the present
study. Height and weight were self-reported by donors at the time of donation, and recorded
by blood centre personnel on the blood donation record or a supplemental research form.
Data collection was approved by the relevant institutional review boards at each blood
centre and the coordinating centre.
Statistical analyses
BMI was calculated as weight (in kilograms) divided by the square of height (in metres).
Density plots were constructed showing the proportion of the study population or subgroup
with each integer value of BMI. Obesity was defined(4) as BMI ≥ 30·0 kg/m2, and overall
and subgroup-specific prevalences of obesity were calculated. Crude obesity prevalences
and empirical BMI values are presented in Table 1 and Figs 1 and 2. Obesity prevalence was
standardized by sex, age and race/ethnicity to the year 2000 US census population using the
direct method(4). Finally, adjusted odds ratios (aOR) for obesity and 95 % confidence
intervals were calculated using multivariable logistic regression. All of the variables shown
in Table 1, including education as a surrogate for socioeconomic status, were included in the
model. All data analyses and multivariable models were conducted using the SAS statistical
software package version 9·1 (SAS Institute Inc., Cary, NC, USA).
0/5000
Dari: -
Ke: -
Hasil (Bahasa Indonesia) 1: [Salinan]
Disalin!
The Centers forDisease Control and Prevention have also used self-reported height and weight data from theUS Behavioral Risk Factor Surveillance System (BRFSS) to estimate county-levelprevalence of obesity. Counties with the highest prevalence of obesity were concentrated inWest Virginia, the Appalachian counties of Tennessee and Kentucky, much of theMississippi Delta, and the southern belt extending across Louisiana, Mississippi, middleAlabama, south Georgia and the coastal regions of the Carolinas(5). However the authorsnoted limitations of both national surveillance mechanisms, including small sample size insex and age strata for NHANES and potential response bias in the BRFSS.Despite a moderate degree of selection bias due to volunteer bias and health criteria, blooddonors provide a potential population for the ongoing surveillance of obesity and otherhealth-related risk factors. Certainly such data have been useful in surveillance for HIV andWest Nile virus(6,7). Data on large numbers of individuals are available from across theUSA, and data are available continuously as opposed to episodic surveys. We are not awareof published data on BMI distributions among blood donors. Such information may beuseful for public health surveillance, and also because body mass criteria are used to defineeligibility for certain types of blood collection (e.g. double red cell donation) and preventionof syncopal reactions.We therefore used data from a large, multicentre consortium of US blood centres to performa descriptive analysis of BMI. Although the prevalence of obesity was modestly loweramong blood donors compared with the general US population, demographic andgeographic differences were observed that may be useful to ongoing public healthsurveillance.MethodsStudy populationThe Retrovirus Epidemiology in Donors Study II (REDS-II) is a multicentre consortium ofsix blood centres located across the USA (see Table 1 and Appendix) which share data onall blood donations at their centres in a centralized research database. We included data onall successful allogeneic blood donations from donors at the six REDS-II centres fromJanuary 2007 to December 2008. All donors were unremunerated volunteers. Autologous(those who donate for themselves) and therapeutic (those who are phlebotomized formedical indications) blood donations were excluded. Whole blood, double red cell andplatelet apheresis donations were included. Donors who gave more than one donation duringthe study period contributed only one observation, namely data recorded at their firstdonation. Prospective blood donors weighing less than 110 lb (50 kg) are deferred fromblood donation, as are donors under the age of 18 years who fail more stringent weight requirements and individuals with various medical or behavioural risks to safe blooddonation, as reported previously(8–10). Deferred donors were not included in the presentstudy. Height and weight were self-reported by donors at the time of donation, and recordedby blood centre personnel on the blood donation record or a supplemental research form.Data collection was approved by the relevant institutional review boards at each bloodcentre and the coordinating centre.Statistical analysesBMI was calculated as weight (in kilograms) divided by the square of height (in metres).Density plots were constructed showing the proportion of the study population or subgroupwith each integer value of BMI. Obesity was defined(4) as BMI ≥ 30·0 kg/m2, and overalland subgroup-specific prevalences of obesity were calculated. Crude obesity prevalencesand empirical BMI values are presented in Table 1 and Figs 1 and 2. Obesity prevalence wasstandardized by sex, age and race/ethnicity to the year 2000 US census population using thedirect method(4). Finally, adjusted odds ratios (aOR) for obesity and 95 % confidenceintervals were calculated using multivariable logistic regression. All of the variables shownin Table 1, including education as a surrogate for socioeconomic status, were included in themodel. All data analyses and multivariable models were conducted using the SAS statisticalsoftware package version 9·1 (SAS Institute Inc., Cary, NC, USA).
Sedang diterjemahkan, harap tunggu..
Hasil (Bahasa Indonesia) 2:[Salinan]
Disalin!
Centers for
Disease Control and Prevention juga telah menggunakan tinggi dan berat badan Data yang dilaporkan sendiri dari
US Behavioral Risk Factor Surveillance System (BRFSS) untuk memperkirakan tingkat kabupaten
prevalensi obesitas. Negara dengan prevalensi tertinggi obesitas terkonsentrasi di
Virginia Barat, kabupaten Appalachian dari Tennessee dan Kentucky, sebagian besar
Mississippi Delta, dan sabuk selatan membentang di Louisiana, Mississippi, tengah
Alabama, Georgia Selatan dan daerah pesisir Carolina ( 5). Namun, para penulis
mencatat keterbatasan dari kedua mekanisme surveilans nasional, termasuk ukuran sampel yang kecil di
kelamin dan usia strata untuk NHANES dan potensi respon bias di BRFSS.
Meskipun tingkat moderat seleksi Bias karena relawan kriteria bias dan kesehatan, darah
donor memberikan potensi populasi untuk surveilans yang sedang berlangsung obesitas dan lainnya
faktor risiko yang berhubungan dengan kesehatan. Tentu saja data tersebut telah berguna dalam pengawasan untuk HIV dan
virus West Nile (6,7). Data jumlah besar individu yang tersedia dari seluruh
Amerika Serikat, dan data yang tersedia secara terus menerus sebagai lawan survei episodik. Kami tidak menyadari
dari data yang diterbitkan pada distribusi BMI antara donor darah. Informasi tersebut mungkin
berguna untuk surveilans kesehatan masyarakat, dan juga karena kriteria massa tubuh digunakan untuk mendefinisikan
kelayakan untuk beberapa jenis koleksi darah (misalnya sumbangan sel darah merah ganda) dan pencegahan
reaksi sinkop.
Oleh karena itu kami menggunakan data dari besar, konsorsium multisenter pusat darah AS untuk melakukan
analisis deskriptif BMI. Meskipun prevalensi obesitas adalah sederhana rendah
di antara donor darah dibandingkan dengan populasi umum di AS, demografi dan
perbedaan geografis yang diamati yang mungkin berguna bagi kesehatan masyarakat yang sedang berlangsung
pengawasan.
Metode
Populasi penelitian
The Retrovirus Epidemiologi di Donor Studi II (REDS-II) adalah konsorsium multisenter dari
enam pusat darah yang terletak di seluruh Amerika Serikat (lihat Tabel 1 dan Lampiran) yang berbagi data pada
semua sumbangan darah di pusat-pusat mereka dalam database penelitian terpusat. Kami termasuk data pada
semua sukses donor darah alogenik dari donor di enam REDS-II Pusat dari
Januari 2007 sampai Desember 2008. Semua donor sukarelawan unremunerated. Autologus
(orang-orang yang menyumbangkan untuk diri mereka sendiri) dan terapeutik (mereka yang phlebotomized untuk
indikasi medis) donor darah dikeluarkan. Seluruh darah, sel darah merah ganda dan
sumbangan apheresis platelet dimasukkan. Donor yang memberikan lebih dari satu sumbangan selama
masa studi menyumbang hanya satu pengamatan, yaitu data yang tercatat pada awalnya mereka
sumbangan. Donor darah calon dengan berat kurang dari £ 110 (50 kg) ditangguhkan dari
donor darah, seperti donor di bawah usia 18 tahun yang gagal persyaratan berat badan yang lebih ketat dan individu dengan berbagai risiko medis atau perilaku untuk darah yang aman
sumbangan, seperti dilaporkan sebelumnya ( 8-10). Donor tangguhan tidak dimasukkan di masa sekarang
studi. Tinggi dan berat badan yang dilaporkan sendiri oleh donor pada saat sumbangan, dan dicatat
oleh petugas pusat darah pada catatan donor darah atau bentuk penelitian tambahan.
Pengumpulan data telah disetujui oleh dewan review kelembagaan yang relevan pada setiap darah
pusat dan pusat koordinasi .
Analisis statistik
BMI dihitung sebagai berat badan (dalam kilogram) dibagi dengan kuadrat dari tinggi badan (dalam meter).
Kepadatan plot dibangun menunjukkan proporsi populasi penelitian atau subkelompok
dengan masing-masing nilai integer dari BMI. Obesitas didefinisikan (4) sebagai BMI ≥ 30 · 0 kg / m2, dan secara keseluruhan
dan prevalensi-subkelompok spesifik obesitas dihitung. Prevalensi obesitas mentah
dan nilai-nilai BMI empiris disajikan pada Tabel 1 dan Gambar 1 dan 2. Obesitas prevalensi
distandarisasi oleh jenis kelamin, usia dan ras / etnis untuk tahun 2000 populasi sensus AS dengan menggunakan
metode langsung (4). Akhirnya, disesuaikan odds ratio (AOR) atas kepercayaan obesitas dan 95%
interval dihitung menggunakan regresi logistik multivariabel. Semua variabel ditampilkan
pada Tabel 1, termasuk pendidikan sebagai pengganti untuk status sosial ekonomi, termasuk dalam
model yang. Semua data analisis dan model multivariabel dilakukan dengan menggunakan SAS statistik
paket perangkat lunak versi 9 · 1 (SAS Institute Inc., Cary, NC, USA).
Sedang diterjemahkan, harap tunggu..
 
Bahasa lainnya
Dukungan alat penerjemahan: Afrikans, Albania, Amhara, Arab, Armenia, Azerbaijan, Bahasa Indonesia, Basque, Belanda, Belarussia, Bengali, Bosnia, Bulgaria, Burma, Cebuano, Ceko, Chichewa, China, Cina Tradisional, Denmark, Deteksi bahasa, Esperanto, Estonia, Farsi, Finlandia, Frisia, Gaelig, Gaelik Skotlandia, Galisia, Georgia, Gujarati, Hausa, Hawaii, Hindi, Hmong, Ibrani, Igbo, Inggris, Islan, Italia, Jawa, Jepang, Jerman, Kannada, Katala, Kazak, Khmer, Kinyarwanda, Kirghiz, Klingon, Korea, Korsika, Kreol Haiti, Kroat, Kurdi, Laos, Latin, Latvia, Lituania, Luksemburg, Magyar, Makedonia, Malagasi, Malayalam, Malta, Maori, Marathi, Melayu, Mongol, Nepal, Norsk, Odia (Oriya), Pashto, Polandia, Portugis, Prancis, Punjabi, Rumania, Rusia, Samoa, Serb, Sesotho, Shona, Sindhi, Sinhala, Slovakia, Slovenia, Somali, Spanyol, Sunda, Swahili, Swensk, Tagalog, Tajik, Tamil, Tatar, Telugu, Thai, Turki, Turkmen, Ukraina, Urdu, Uyghur, Uzbek, Vietnam, Wales, Xhosa, Yiddi, Yoruba, Yunani, Zulu, Bahasa terjemahan.

Copyright ©2025 I Love Translation. All reserved.

E-mail: