primarily utilized as a gelling and thickening agent in foodproducts.  terjemahan - primarily utilized as a gelling and thickening agent in foodproducts.  Bahasa Indonesia Bagaimana mengatakan

primarily utilized as a gelling and

primarily utilized as a gelling and thickening agent in food
products. Specific uses of carrageenan include: creating
water-based gel systems, stabilizing dairy products, and
improving yield and texture in meat and poultry products.
Carrageenan has also been successfully used to increase
yield and improve texture in seafood systems (Pszczola
2003).
There are two main processes for manufacturing carrageenans. One results in native carrageenan and the second
process yields a refined carrageenan. European Community
specifications have defined refined carrageenan (E407(i)) as
precipitated, filtered or clear soluble, whereas native carrageenan (E407(ii)) is defined as semi-refined, washed, with
cellulose or Philippine natural grade. Both start with fresh
seaweed that undergoes a cleaning and drying process and
both yield approximately 80% carrageenan in the final
powder (Bixler 1993).
Besides the manufacturing process, the main difference
between native and refined carrageenans relates to the composition of the noncarrageenan components. For native carrageenan, there is approximately 8–12% cellulose or crude
fiber remaining from cell wall fragments and up to 2% crude
protein. In contrast, refined carrageenan contains 15–20%
mineral salts and up to 1% crude protein (Bixler 1993).
In muscle protein gels,k- andi-carrageenans likely form
an independent network, which supports the principal
structure formed by proteins during gelation. Kappa carrageenan has been shown to interact with salt-soluble meat
proteins to increase compressive force of gels (DeFreitas
et al. 1997). It is believed that the physical entrapment
of protein and water byk-carrageenan improved waterholding capacity and resulted in harder texture of gels made
with salt-soluble meat proteins and carrageenan (DeFreitas
et al. 1997).
It is commonly thought that a coil-helix transition of
carrageenan is necessary for carrageenan gelation
(Hermanssonet al. 1991). Gel characteristics of carrageenan
can be adjusted by adding various cation salts at different
concentrations (Montero and Perez-Mateos 2002). The
potassium form of k-carrageenan in 100 mM KCl solution produced stronger gels than the sodium form of
k-carrageenan in 250 and 500 mM NaCl, respectively. In
addition, the calcium form ofk-carrageenan formed weak
gels in 100 and 300 mM calcium (Hermanssonet al. 1991).
In contrast,i-carrageenan has demonstrated a cation preference of calcium followed by potassium and sodium (Morris
and Belton 1982).
There are studies that have reported on the interactions
of refined carrageenan with fish protein (Llantoet al. 1990;
Gomez-Guillen and Montero 1996; Montero and PerezMateos 2002). Additional studies have examined the effect
of different salts in a fish protein-carrageenan system
(Weinberg et al. 1984; Montero and Perez-Mateos 2001,
2002). However, no studies were found that investigated the
interactions of refined carrageenan with Alaska pollock fish
proteins as affected by various salts. Therefore, the objective
of this study was to investigate the textural and rheological
effects of refined i- and k-carrageenans, respectively, in
Alaska pollock fish protein gels as affected by NaCl, KCl and
CaCl2.
MATERIALS AND METHODS
Sample Preparation
Alaska pollock surimi (FA grade), which was frozen and
approximately 9 months, was provided by Trident Seafoods
(Seattle, WA). Each block was cut into approximately 800 g
pieces, individually vacuum sealed (model Reiser VM-4142,
Roescher Werke GMBH, Osnabrueck, Germany) in plastic
bags on a seal setting of 5 and vacuum setting of 7 and
stored at-18C until used.
Refined iota (alcohol precipitated, mainly on calcium
form) and kappa (gel pressed, containing typically 4–6%
KCl) carrageenans (CP Kelco, Lille Skensved, Denmark)
were individually added at five concentration levels (0, 0.25,
0.5, 0.75 and 1.0%) to Alaska pollock surimi. Subsequently,
the proportion of Alaska pollock surimi was reduced from
79 to 78, 77, 76 and 75%, respectively, as carrageenan was
added to maintain consistent moisture. Moisture level of
chopped pastes was adjusted to 78% using ice water. To
solubilize the myofibrillar proteins, 1.2–2.5% NaCl is used
in commercial practice (Samejima et al. 1981; Yasui et al.
1982; Wang and Smith 1995). For this study, 2% salt (NaCl,
KClorCaCl2), respectively, was added to extract fish myofibrillar protein. The selection of salt concentration at 2%
was due to most surimi seafood products that are manufactured at 1.5–2.2% NaCl. A total of 27 samples were evaluated. Temperature during chopping was maintained below
5C. Each batch was prepared by tempering the surimi
blocks at room temperature for 1 h and then comminuting
with additional ingredients for a total of 6 min. Before
comminuting, surimi was cut into approximately 3-cm
cubes, placed in a vacuum chopper (Model 5289, Stephan
Machinery Corp., Columbus, OH), and chopped at low
speed for 1 min (1,800 rpm). Salt was then added and
chopping continued at low speed for 1 min. A vacuum was
applied (40–60 bar) and chopping proceeded at high speed
(3,600 rpm) for 3 min. The paste for each sample was then
transferred to a plastic bag and vacuum packed (model
Reiser VM-4142, Roescher Werke GMBH) to eliminate air
bubbles introduced during the paste transfer. Paste was
extruded using a sausage stuffer (F. Dick.12 L capacity,
The Sausage Maker, Buffalo, NY) into stainless steel tubes
(inner diameter at 1.9 cm, length at 17.5 cm), each coated
with a lecithin-based release agent (Pam TM, butter flavor,
0/5000
Dari: -
Ke: -
Hasil (Bahasa Indonesia) 1: [Salinan]
Disalin!
terutama digunakan sebagai agen gelling dan penebalan dalam makananproduk. Tertentu menggunakan Karagenan termasuk: menciptakansistem berbasis air gel, menstabilkan produk susu, danmeningkatkan hasil dan tekstur daging dan unggas produk.Karagenan juga telah berhasil digunakan untuk meningkatkanmenghasilkan dan memperbaiki tekstur dalam sistem makanan laut (Pszczola2003).Ada dua proses utama untuk pembuatan carrageenans. Salah satu hasil Karagenan asli dan keduaproses menghasilkan halus carrageenan. Komunitas EropaSpesifikasi telah didefinisikan halus Karagenan (E407(i)) sebagaiprecipitated, disaring atau jelas larut, sedangkan asli Karagenan (E407(ii)) didefinisikan sebagai semi halus, dicuci, denganselulosa atau kelas alami Filipina. Keduanya mulai dengan segarrumput laut yang mengalami pembersihan dan pengeringan dankeduanya menghasilkan kurang lebih 80% Karagenan di finalbubuk (Bixler 1993).Selain proses manufaktur, perbedaan utamaantara carrageenans asli dan halus yang berhubungan dengan komposisi komponen noncarrageenan. Untuk asli Karagenan, ada sekitar 8 – 12% selulosa atau mentahserat yang tersisa dari sel dinding fragmen dan hingga 2% mentahprotein. Sebaliknya, halus Karagenan berisi 15-20%mineral garam dan hingga 1% protein kasar (Bixler 1993).Dalam otot protein gel, bentuk mungkin k-andi-carrageenansJaringan independen, yang mendukung kepala sekolahstruktur yang dibentuk oleh protein selama gelation. Kappa Karagenan telah ditunjukkan untuk berinteraksi dengan garam larut dagingprotein untuk meningkatkan kekuatan tekan gel (DeFreitaset al., 1997). Diyakini bahwa jebakan fisikprotein dan air byk-carrageenan peningkatan kapasitas waterholding dan mengakibatkan lebih sulit tekstur gel yang dibuatdengan protein daging garam larut dan Karagenan (DeFreitaset al., 1997).Ia sering berpendapat bahwa transisi coil-helixKaragenan diperlukan untuk carrageenan gelation(Hermanssonet al. 1991). Gel karakteristik Karagenandapat disesuaikan dengan menambahkan berbagai kation garam pada berbedakonsentrasi (Montero dan Perez-Mateos 2002). Thebentuk kalium k-carrageenan di 100 mM KCl solusi diproduksi gel lebih kuat daripada bentuk natriumk-carrageenan dalam 250 dan 500 mM NaCl, masing-masing. DalamSelain itu, kalsium bentuk ofk-carrageenan dibentuk lemahgel 100 sampai 300 mM kalsium (Hermanssonet al. 1991).Sebaliknya, i-carrageenan telah menunjukkan preferensi kation kalsium yang diikuti oleh kalium dan natrium (Morrisdan Belton 1982).Ada studi yang dilaporkan pada interaksidari halus Karagenan dengan protein ikan (Llantoet al. 1990;Gomez-Guillen dan Montero 1996; Montero dan PerezMateos 2002). Studi tambahan telah meneliti efekgaram yang berbeda dalam sistem protein-carrageenan ikan(Weinberg et al. 1984; Montero dan 2001 Perez-Mateos,2002). Namun, ada penelitian yang ditemukan yang diselidikiinteraksi Karagenan halus dengan Alaska pollock ikanprotein seperti yang dipengaruhi oleh berbagai garam. Oleh karena itu, tujuanPenelitian ini adalah untuk menyelidiki tekstur dan rheologicalEfek halus i - dan k-carrageenans, masing-masing, dalamAlaska pollock ikan protein gel terpengaruh oleh NaCl, KCl danCaCl2.BAHAN DAN METODEPreparasi sampelAlaska pollock surimi (FA kelas), yang beku dansekitar 9 bulan, disediakan oleh Trident Seafoods(Seattle, WA). Setiap blok dipotong ke kira-kira 800 gpotongan, secara individual vakum disegel (model Reiser VM-4142,Roescher Werke GMBH, Osnabrueck, Jerman) dalam plastikkantong segel pengaturan 5 dan vakum pengaturan 7 dandisimpan pada - 18C sampai digunakan.Iota halus (alkohol diendapkan, terutama pada kalsiumbentuk) dan kappa (gel ditekan, mengandung biasanya 4-6%KCl) carrageenans (CP Kelco, Lille Skensved, Denmark)masing-masing ditambahkan pada lima tingkat konsentrasi (0, 0,25,0,5, 0,75 dan 1,0%) untuk Alaska pollock surimi. Selanjutnya,proporsi Alaska pollock surimi diturunkan dari79 menjadi 78, 77, 76, dan 75%, masing-masing, seperti Karagenanditambahkan untuk menjaga kelembaban yang konsisten. Tingkat kelembabancincang pasta disesuaikan dengan 78% menggunakan air es. Untuksolubilize protein myofibrillar, 1.2-2,5% NaCl digunakandalam praktek komersial (Samejima et al. 1981; Yasui et al.tahun 1982; Wang dan Smith 1995). Untuk studi ini, 2% garam (NaCl,KClorCaCl2), masing-masing, telah ditambahkan ke ekstrak protein myofibrillar ikan. Pilihan konsentrasi garam 2%adalah karena kebanyakan surimi produk makanan laut yang diproduksi di 1.5 – 2,2% NaCl. Total 27 sampel dievaluasi. Suhu saat memotong dipertahankan di bawah5C. setiap kumpulan disiapkan oleh temper surimiblok pada suhu kamar untuk 1 h dan kemudian comminutingdengan bahan-bahan tambahan untuk total 6 menit sebelumcomminuting, surimi dipotong ke kira-kira 3 cmkubus, ditempatkan di helikopter vakum (Model 5289, StephanMesin Corp, Columbus, OH), dan cincang rendahkecepatan untuk 1 min (1.800 rpm). Garam kemudian ditambahkan danmemotong terus pada kecepatan rendah untuk 1 menit. Penyedot debuditerapkan (40-60 bar) dan memotong terus pada kecepatan tinggi(3.600 rpm) selama 3 menit. Pasta untuk setiap sampel ituditransfer ke kantong plastik dan vakum makan (modelReiser VM-4142, Roescher Werke GMBH) untuk menghilangkan udaragelembung diperkenalkan selama transfer pasta. Pasta adalahmenggunakan sosis stuffer (F. Dick.12 L kapasitas, extrudatPembuat sosis, Buffalo, NY) ke dalam tabung stainless steel(diameter dalam 1.9 cm, panjang di 17,5 cm), masing-masing dilapisidengan rilis berbasis lesitin agen (TM Pam, rasa mentega,
Sedang diterjemahkan, harap tunggu..
 
Bahasa lainnya
Dukungan alat penerjemahan: Afrikans, Albania, Amhara, Arab, Armenia, Azerbaijan, Bahasa Indonesia, Basque, Belanda, Belarussia, Bengali, Bosnia, Bulgaria, Burma, Cebuano, Ceko, Chichewa, China, Cina Tradisional, Denmark, Deteksi bahasa, Esperanto, Estonia, Farsi, Finlandia, Frisia, Gaelig, Gaelik Skotlandia, Galisia, Georgia, Gujarati, Hausa, Hawaii, Hindi, Hmong, Ibrani, Igbo, Inggris, Islan, Italia, Jawa, Jepang, Jerman, Kannada, Katala, Kazak, Khmer, Kinyarwanda, Kirghiz, Klingon, Korea, Korsika, Kreol Haiti, Kroat, Kurdi, Laos, Latin, Latvia, Lituania, Luksemburg, Magyar, Makedonia, Malagasi, Malayalam, Malta, Maori, Marathi, Melayu, Mongol, Nepal, Norsk, Odia (Oriya), Pashto, Polandia, Portugis, Prancis, Punjabi, Rumania, Rusia, Samoa, Serb, Sesotho, Shona, Sindhi, Sinhala, Slovakia, Slovenia, Somali, Spanyol, Sunda, Swahili, Swensk, Tagalog, Tajik, Tamil, Tatar, Telugu, Thai, Turki, Turkmen, Ukraina, Urdu, Uyghur, Uzbek, Vietnam, Wales, Xhosa, Yiddi, Yoruba, Yunani, Zulu, Bahasa terjemahan.

Copyright ©2024 I Love Translation. All reserved.

E-mail: