Star Schema: Indexing ProblemPeriod dimension has a compound key, a hi terjemahan - Star Schema: Indexing ProblemPeriod dimension has a compound key, a hi Bahasa Indonesia Bagaimana mengatakan

Star Schema: Indexing ProblemPeriod

Star Schema: Indexing Problem
Period dimension has a compound key, a hierarchy of day, week, month, quarter, year.
Problems with compound key:
It requires multiple metadata definitions
Fact table must carry all key components
The size of the index increases, performance decreases
Alternatives:
Concatenate the keys into a single key (solve the first two problems)
Use artificial (generated) key. Move the compound key into non-key attributes (The Best Approach)

Star Schema: Level Indicator Problem
The dimensional table design often includes a level of hierarchy indicator for every record (whether the record stores details or aggregates).
The best alternative to using the level indicator is the snowflake schema. In this schema, aggregate fact tables are created separately from detail fact tables. In addition to the main fact tables, the snowflake schema contains separate fact tables for each level of aggregation.

STARjoin and STARindex
STARjoin is a high-speed, single-pass, parallelizable multitable join, invented by Red Brick. Red Brick’s DBMS can join more than two tables in a single operation.
The core technology in STARjoin is an innovative approach to indexing.
Red Brick’s RDBMS supports the creation of specialized indexes, called STARindexes, to dramatically accelerate join performance.

STARindex: The Concept
STARindexes are created on one or more foreign key columns of a fact table.
Unlike traditional indexes that contain information to translate a column value to a list of rows with that value, a STARindex contains highly compressed information that relates the dimensions of a fact table to the rows that contain those dimensions

STARindex vs Traditional Index
Typical Multicolumn index references a single table whereas the STARindex can reference multiple tables.
With multicolumn indexes, if a query’s WHERE clause does not constrain on all the columns in the composite index, the index cannot be fully used unless the specified columns are a leading subset. On the other hand, STARindex can be fully utilized regardless of patterns of constraint processing.

STARindex Example
Assume there are 500 possible PRODUCTS, 200 MARKETS, 300 PERIODS, and one million FACTS in the data warehouse database. Further assume that a particular query selects 50 PRODUCTS, 20 MARKETS, 30 PERIODS that ultimately will select 1000 of the FACTS.
A traditional pairwise join strategy would generate 111,000 rows. A cartesian product would perform better in generating 50x20x30=30,000 intermediate rows plus 1000 FACTS rows = 31,000 rows.
A well-constrained STARjoin would generate only slightly more combinations than exist in the selected rows of the FACTS table, on average about 10 percent more, resulting 1100 rows.

Bitmapped Indexing
SYBASE IQ is an example of a product that uses a bitmapped index structure of the data stored in the SYBASE DBMS.
The Indexing Technology is developed by Expressway Technologies, which Sybase acquired in 1994.
SYBASE IQ is a stand-alone database that targeted as an “ideal” data mart solution that is optimized to handle multiuser ad hoc queries.

Data Cardinality
Bitmap indexes are used to optimized queries against low-cardinality data – the total number of potential values is relatively low. For example, gender cardinality is only 2 (male and female).
Bitmap indexes can become cumbersome and even unsuitable for high-cardinality data where the range of potential values is high. For example, values like “income” may have an almost infinite number of values.
SYBASE IQ uses a patented technique called Bit-Wise technology to build bitmap indexes for high-cardinality data.

Shortcomings of indexing
No updates
Lack of core RDBMS features
Less advantageous for planned queries
High memory usage
0/5000
Dari: -
Ke: -
Hasil (Bahasa Indonesia) 1: [Salinan]
Disalin!
Star Schema: Indexing ProblemPeriod dimension has a compound key, a hierarchy of day, week, month, quarter, year.Problems with compound key:It requires multiple metadata definitionsFact table must carry all key componentsThe size of the index increases, performance decreasesAlternatives:Concatenate the keys into a single key (solve the first two problems)Use artificial (generated) key. Move the compound key into non-key attributes (The Best Approach)Star Schema: Level Indicator ProblemThe dimensional table design often includes a level of hierarchy indicator for every record (whether the record stores details or aggregates).The best alternative to using the level indicator is the snowflake schema. In this schema, aggregate fact tables are created separately from detail fact tables. In addition to the main fact tables, the snowflake schema contains separate fact tables for each level of aggregation.STARjoin and STARindexSTARjoin is a high-speed, single-pass, parallelizable multitable join, invented by Red Brick. Red Brick’s DBMS can join more than two tables in a single operation.The core technology in STARjoin is an innovative approach to indexing.Red Brick’s RDBMS supports the creation of specialized indexes, called STARindexes, to dramatically accelerate join performance.STARindex: The ConceptSTARindexes are created on one or more foreign key columns of a fact table.Unlike traditional indexes that contain information to translate a column value to a list of rows with that value, a STARindex contains highly compressed information that relates the dimensions of a fact table to the rows that contain those dimensionsSTARindex vs Traditional IndexTypical Multicolumn index references a single table whereas the STARindex can reference multiple tables.With multicolumn indexes, if a query’s WHERE clause does not constrain on all the columns in the composite index, the index cannot be fully used unless the specified columns are a leading subset. On the other hand, STARindex can be fully utilized regardless of patterns of constraint processing.STARindex ExampleAssume there are 500 possible PRODUCTS, 200 MARKETS, 300 PERIODS, and one million FACTS in the data warehouse database. Further assume that a particular query selects 50 PRODUCTS, 20 MARKETS, 30 PERIODS that ultimately will select 1000 of the FACTS.A traditional pairwise join strategy would generate 111,000 rows. A cartesian product would perform better in generating 50x20x30=30,000 intermediate rows plus 1000 FACTS rows = 31,000 rows.A well-constrained STARjoin would generate only slightly more combinations than exist in the selected rows of the FACTS table, on average about 10 percent more, resulting 1100 rows.Bitmapped IndexingSYBASE IQ is an example of a product that uses a bitmapped index structure of the data stored in the SYBASE DBMS.The Indexing Technology is developed by Expressway Technologies, which Sybase acquired in 1994.SYBASE IQ is a stand-alone database that targeted as an “ideal” data mart solution that is optimized to handle multiuser ad hoc queries.Data CardinalityBitmap indexes are used to optimized queries against low-cardinality data – the total number of potential values is relatively low. For example, gender cardinality is only 2 (male and female).Bitmap indexes can become cumbersome and even unsuitable for high-cardinality data where the range of potential values is high. For example, values like “income” may have an almost infinite number of values.SYBASE IQ uses a patented technique called Bit-Wise technology to build bitmap indexes for high-cardinality data.Shortcomings of indexingNo updatesLack of core RDBMS featuresLess advantageous for planned queriesHigh memory usage
Sedang diterjemahkan, harap tunggu..
Hasil (Bahasa Indonesia) 2:[Salinan]
Disalin!
Bintang Skema: Indexing Masalah
dimensi Periode memiliki kunci majemuk, hirarki hari, minggu, bulan, kuartal, tahun.
Masalah dengan kunci senyawa:
Hal ini membutuhkan beberapa metadata definisi
tabel Fakta harus membawa semua komponen kunci
Ukuran meningkat indeks, kinerja menurun
Alternatif:
Concatenate kunci menjadi kunci tunggal (memecahkan dua masalah pertama)
Gunakan buatan (dihasilkan) kunci. Pindahkan kunci senyawa menjadi atribut non-key (The Best Approach) Bintang Skema: Level Indicator Masalah . Desain meja dimensi sering mencakup tingkat indikator hirarki untuk setiap record (apakah toko kaset detail atau agregat) Alternatif terbaik untuk menggunakan Indikator tingkat adalah skema snowflake. Dalam skema ini, tabel fakta agregat diciptakan secara terpisah dari tabel rinci fakta. Selain tabel fakta utama, skema snowflake mengandung tabel fakta yang terpisah untuk setiap tingkat agregasi. STARjoin dan STARindex STARjoin adalah kecepatan tinggi, single-pass, parallelizable multitable bergabung, diciptakan oleh Red Brick. Red Brick ini DBMS dapat bergabung lebih dari dua tabel dalam satu operasi. Teknologi inti dalam STARjoin adalah sebuah pendekatan inovatif untuk pengindeksan. Red Brick dunia RDBMS mendukung penciptaan indeks khusus, yang disebut STARindexes, untuk secara dramatis mempercepat bergabung kinerja. STARindex: Konsep STARindexes diciptakan pada satu atau lebih kolom kunci asing dari tabel fakta. Tidak seperti indeks tradisional yang berisi informasi untuk menerjemahkan nilai kolom ke daftar baris dengan nilai itu, STARindex berisi informasi yang sangat terkompresi yang berhubungan dimensi dari tabel fakta ke baris yang berisi dimensi-dimensi STARindex vs Indeks Tradisional Indeks multicolumn Khas referensi satu meja sedangkan STARindex dapat referensi beberapa tabel. Dengan indeks multicolumn, jika permintaan itu klausa WHERE tidak membatasi pada semua kolom dalam indeks komposit, indeks tidak dapat sepenuhnya digunakan kecuali kolom yang ditentukan adalah bagian terkemuka. Di sisi lain, STARindex dapat dimanfaatkan sepenuhnya terlepas dari pola pengolahan kendala. STARindex Contoh Asumsikan ada 500 kemungkinan PRODUK, 200 PASAR, 300 PERIODE, dan satu juta FAKTA dalam database data warehouse. Lanjut mengasumsikan bahwa pencarian tertentu memilih 50 PRODUK, 20 PASAR, 30 PERIODE yang pada akhirnya akan memilih 1.000 dari FAKTA. A berpasangan tradisional bergabung strategi akan menghasilkan 111.000 baris. Sebuah produk Cartesian akan tampil lebih baik dalam menghasilkan 50x20x30 = 30.000 baris menengah ditambah 1000 FAKTA baris = 31.000 baris. Sumur-dibatasi STARjoin akan menghasilkan hanya sedikit lebih kombinasi dibandingkan dengan yang ada di baris yang dipilih dari tabel FAKTA, rata-rata sekitar 10 persen lebih, dihasilkan 1.100 baris. Indexing Bitmapped Sybase IQ adalah contoh dari produk yang menggunakan struktur indeks bitmap dari data yang disimpan di Sybase DBMS. The Indexing Teknologi ini dikembangkan oleh Expressway Technologies, yang Sybase diperoleh pada tahun 1994. Sybase IQ adalah stand yang . saja database yang ditargetkan sebagai "ideal" solusi Data mart yang dioptimalkan untuk menangani multiuser ad hoc query data Kardinalitas Bitmap indeks digunakan untuk query dioptimalkan terhadap data rendah kardinalitas - jumlah total nilai potensial relatif rendah. Misalnya, kardinalitas gender hanya 2 (pria dan wanita). indeks Bitmap dapat menjadi rumit dan bahkan tidak cocok untuk data tinggi kardinalitas mana rentang nilai potensial tinggi. Misalnya, nilai-nilai seperti "pendapatan" mungkin memiliki jumlah hampir tak terbatas dari nilai-nilai. Sybase IQ menggunakan teknik dipatenkan disebut teknologi Bit-Wise untuk membangun indeks bitmap untuk data tinggi kardinalitas. Kekurangan dari mengindeks ada update Kurangnya fitur RDBMS inti Kurang menguntungkan untuk permintaan direncanakan penggunaan memori Tinggi






































Sedang diterjemahkan, harap tunggu..
 
Bahasa lainnya
Dukungan alat penerjemahan: Afrikans, Albania, Amhara, Arab, Armenia, Azerbaijan, Bahasa Indonesia, Basque, Belanda, Belarussia, Bengali, Bosnia, Bulgaria, Burma, Cebuano, Ceko, Chichewa, China, Cina Tradisional, Denmark, Deteksi bahasa, Esperanto, Estonia, Farsi, Finlandia, Frisia, Gaelig, Gaelik Skotlandia, Galisia, Georgia, Gujarati, Hausa, Hawaii, Hindi, Hmong, Ibrani, Igbo, Inggris, Islan, Italia, Jawa, Jepang, Jerman, Kannada, Katala, Kazak, Khmer, Kinyarwanda, Kirghiz, Klingon, Korea, Korsika, Kreol Haiti, Kroat, Kurdi, Laos, Latin, Latvia, Lituania, Luksemburg, Magyar, Makedonia, Malagasi, Malayalam, Malta, Maori, Marathi, Melayu, Mongol, Nepal, Norsk, Odia (Oriya), Pashto, Polandia, Portugis, Prancis, Punjabi, Rumania, Rusia, Samoa, Serb, Sesotho, Shona, Sindhi, Sinhala, Slovakia, Slovenia, Somali, Spanyol, Sunda, Swahili, Swensk, Tagalog, Tajik, Tamil, Tatar, Telugu, Thai, Turki, Turkmen, Ukraina, Urdu, Uyghur, Uzbek, Vietnam, Wales, Xhosa, Yiddi, Yoruba, Yunani, Zulu, Bahasa terjemahan.

Copyright ©2025 I Love Translation. All reserved.

E-mail: