q Operational systems converted from older versions are prone to the p terjemahan - q Operational systems converted from older versions are prone to the p Bahasa Indonesia Bagaimana mengatakan

q Operational systems converted fro

q Operational systems converted from older versions are prone to the perpetuation of errors. q Operational systems brought in house from outsourcing companies converted from their proprietary software may have missing data. q Data from outside sources that is not verified and audited may have potential problems. q When applications are consolidated because of corporate mergers and acquisitions, these may be error-prone because of time pressures. q When reports from old legacy systems are no longer used, that could be because of erroneous data reported. q If users do not trust certain reports fully, there may be room for suspicion because of bad data.
q Whenever certain data elements or definitions are confusing to the users, these may be suspect. q If each department has its own copies of standard data such as Customer or Product, it is likely corrupt data exists in these files. q If reports containing the same data reformatted differently do not match, data quality is suspect. q Wherever users perform too much manual reconciliation, it may because of poor data quality. q If production programs frequently fail on data exceptions, large parts of the data in those systems are likely to be corrupt. q Wherever users are not able to get consolidated reports, it is possible that data is not integrated.
Figure 13-4 Discovering the extent of data pollution.












be because of poor data quality.
Who Should be Responsible? Data quality or data corruption originate in the source systems. Therefore, should not the owners of the data in the source systems alone be responsible for data quality? If these data owners are responsible for the data, should they also be bear the responsibility for any data pollution that happens in the source systems? If data quality in the source sys-
tems is high, the data quality in the data warehouse will also be high. But, as you well know, in operational systems, there are no clear roles and responsibilities for maintaining data quality. This is a serious problem. Owners of data in the operational systems are gen- erally not directly involved in the data warehouse. They have little interest in keeping the data clean in the data warehouse. Form a steering committee to establish the data quality framework discussed in the pre- vious section. All the key players must be part of the steering committee. You must have representatives of the data owners of source systems, users of the data warehouse, and IT personnel responsible for the source systems and the data warehouse. The steering com- mittee is charged with assignment of roles and responsibilities. Allocation of resources is also the steering committee’s responsibility. The steering committee also arranges data quality audits. Figure 13-6 shows the participants in the data quality initiatives. These persons repre- sent the user departments and IT. The participants serve on the data quality team in specif- ic roles. Listed below are the suggested responsibilities for the roles:
Data Consumer. Uses the data warehouse for queries, reports, and analysis. Establish- es the acceptable levels of data quality. Data Producer. Responsible for the quality of data input into the source systems. Data Expert. Expert in the subject matter and the data itself of the source systems. Re- sponsible for identifying pollution in the source systems. Data Policy Administrator. Ultimately responsible for resolving data corruption as data is transformed and moved into the data warehouse.
Identify the business functions affected most by bad data.
Establish Data Quality Steering Committee.
Agree on a suitable data quality framework.
Institute data quality policy and standards.
Define quality measurement parameters and benchmarks.
Select high impact data elements and determine priorities.
Plan and execute data cleansing for high impact data elements.
Plan and execute data cleansing for other less severe elements.
INITIAL DATA CLEANSING EFFORTS
ONGOING DATA CLEANSING EFFORTS
IT Professionals User Representative






0/5000
Dari: -
Ke: -
Hasil (Bahasa Indonesia) 1: [Salinan]
Disalin!
q Operational systems converted from older versions are prone to the perpetuation of errors. q Operational systems brought in house from outsourcing companies converted from their proprietary software may have missing data. q Data from outside sources that is not verified and audited may have potential problems. q When applications are consolidated because of corporate mergers and acquisitions, these may be error-prone because of time pressures. q When reports from old legacy systems are no longer used, that could be because of erroneous data reported. q If users do not trust certain reports fully, there may be room for suspicion because of bad data.q Whenever certain data elements or definitions are confusing to the users, these may be suspect. q If each department has its own copies of standard data such as Customer or Product, it is likely corrupt data exists in these files. q If reports containing the same data reformatted differently do not match, data quality is suspect. q Wherever users perform too much manual reconciliation, it may because of poor data quality. q If production programs frequently fail on data exceptions, large parts of the data in those systems are likely to be corrupt. q Wherever users are not able to get consolidated reports, it is possible that data is not integrated. Figure 13-4 Discovering the extent of data pollution.➨➨➨➨➨➨➨➨➨➨➨➨be because of poor data quality.Who Should be Responsible? Data quality or data corruption originate in the source systems. Therefore, should not the owners of the data in the source systems alone be responsible for data quality? If these data owners are responsible for the data, should they also be bear the responsibility for any data pollution that happens in the source systems? If data quality in the source sys-tems is high, the data quality in the data warehouse will also be high. But, as you well know, in operational systems, there are no clear roles and responsibilities for maintaining data quality. This is a serious problem. Owners of data in the operational systems are gen- erally not directly involved in the data warehouse. They have little interest in keeping the data clean in the data warehouse. Form a steering committee to establish the data quality framework discussed in the pre- vious section. All the key players must be part of the steering committee. You must have representatives of the data owners of source systems, users of the data warehouse, and IT personnel responsible for the source systems and the data warehouse. The steering com- mittee is charged with assignment of roles and responsibilities. Allocation of resources is also the steering committee’s responsibility. The steering committee also arranges data quality audits. Figure 13-6 shows the participants in the data quality initiatives. These persons repre- sent the user departments and IT. The participants serve on the data quality team in specif- ic roles. Listed below are the suggested responsibilities for the roles:Data Consumer. Uses the data warehouse for queries, reports, and analysis. Establish- es the acceptable levels of data quality. Data Producer. Responsible for the quality of data input into the source systems. Data Expert. Expert in the subject matter and the data itself of the source systems. Re- sponsible for identifying pollution in the source systems. Data Policy Administrator. Ultimately responsible for resolving data corruption as data is transformed and moved into the data warehouse. Identify the business functions affected most by bad data.Establish Data Quality Steering Committee.Agree on a suitable data quality framework.Institute data quality policy and standards.Define quality measurement parameters and benchmarks.Select high impact data elements and determine priorities.Plan and execute data cleansing for high impact data elements.Plan and execute data cleansing for other less severe elements.INITIAL DATA CLEANSING EFFORTSONGOING DATA CLEANSING EFFORTSIT Professionals User Representative
Sedang diterjemahkan, harap tunggu..
Hasil (Bahasa Indonesia) 2:[Salinan]
Disalin!
sistem operasional q dikonversi dari versi lama rentan terhadap kelangsungan kesalahan. Sistem Operasional q dibawa rumah dari perusahaan outsourcing dikonversi dari perangkat lunak berpemilik mereka mungkin memiliki data yang hilang. q Data dari sumber luar yang tidak diverifikasi dan diaudit mungkin memiliki potensi masalah. q Ketika aplikasi dikonsolidasikan karena merger dan akuisisi perusahaan, ini mungkin rawan kesalahan karena tekanan waktu. q Ketika laporan dari sistem warisan lama yang tidak lagi digunakan, yang bisa karena data yang salah dilaporkan. q Jika pengguna tidak percaya laporan tertentu sepenuhnya, mungkin ada ruang untuk kecurigaan karena data yang buruk.
q Setiap kali elemen data tertentu atau definisi membingungkan bagi pengguna, ini mungkin menjadi tersangka. q Jika masing-masing departemen memiliki salinan sendiri dari data standar seperti Pelanggan atau Produk, itu adalah data kemungkinan korup ada dalam file-file ini. q Jika laporan yang berisi data yang sama diformat berbeda tidak cocok, kualitas data adalah tersangka. q mana pun pengguna melakukan rekonsiliasi pengguna terlalu banyak, mungkin karena kualitas data yang buruk. q Jika program produksi sering gagal pada pengecualian data, sebagian besar data dalam sistem-sistem cenderung korup. q Dimanapun pengguna tidak bisa mendapatkan laporan konsolidasi, adalah mungkin bahwa data tidak terintegrasi.
Gambar 13-4 Menemukan tingkat polusi data.












jadi karena kualitas data yang buruk.
yang Harus Bertanggung Jawab? Kualitas data atau data korupsi berasal dari sistem sumber. Oleh karena itu, tidak harus pemilik data dalam sistem sumber sendiri bertanggung jawab untuk kualitas data? Jika pemilik data ini bertanggung jawab untuk data, harus mereka juga menjadi memikul tanggung jawab untuk setiap pencemaran data yang terjadi dalam sistem sumber? Jika kualitas data dalam sistem pendokumentasian sumber
tems tinggi, kualitas data dalam data warehouse juga akan tinggi. Tapi, seperti yang Anda ketahui, dalam sistem operasional, tidak ada peran yang jelas dan tanggung jawab untuk menjaga kualitas data. Ini adalah masalah serius. Pemilik data dalam sistem operasional yang gen- secara lisan tidak terlibat langsung dalam data warehouse. Mereka memiliki sedikit minat dalam menjaga data bersih di gudang data. Membentuk komite pengarah untuk membangun kerangka kerja kualitas data yang dibahas di bagian vious pra. Semua pemain kunci harus menjadi bagian dari komite pengarah. Anda harus memiliki perwakilan dari pemilik data sistem sumber, pengguna data warehouse, dan personil TI bertanggung jawab untuk sistem sumber dan data warehouse. Kemudi com- mittee dibebankan dengan tugas peran dan tanggung jawab. Alokasi sumber daya juga tanggung jawab komite pengarah ini. Komite pengarah juga mengatur audit kualitas data. Gambar 13-6 menunjukkan peserta dalam inisiatif kualitas data. Orang-orang ini wakili departemen pengguna dan IT. Para peserta melayani di tim kualitas data dalam peran spesifik secara. Di bawah ini adalah tanggung jawab yang disarankan untuk peran:
data Consumer. Menggunakan data warehouse untuk query, laporan, dan analisis. Silvikultur es tingkat yang dapat diterima dari kualitas data. Produser data. Bertanggung jawab atas kualitas input data ke dalam sistem sumber. Ahli data. Ahli dalam materi pelajaran dan data itu sendiri dari sistem sumber. Ulang jawab untuk mengidentifikasi polusi dalam sistem sumber. Administrator Kebijakan data. Bertanggung jawab untuk menyelesaikan korupsi data sebagai data ditransformasikan dan pindah ke dalam gudang data.
Mengidentifikasi fungsi bisnis paling terkena dampak data yang buruk.
Membentuk Komite Pengarah Kualitas Data.
Setuju pada kerangka kualitas data yang sesuai.
Institute kebijakan kualitas data dan standar.
Tentukan kualitas parameter pengukuran dan benchmark.
Pilih elemen data dampak tinggi dan menentukan prioritas.
Rencana dan melaksanakan pembersihan data untuk elemen data dampak tinggi.
Rencana dan melaksanakan pembersihan data untuk elemen kurang parah lainnya.
AWAL UPAYA DATA MEMBERSIHKAN
SEDANG UPAYA DATA MEMBERSIHKAN
IT Representative Profesional Pengguna






Sedang diterjemahkan, harap tunggu..
 
Bahasa lainnya
Dukungan alat penerjemahan: Afrikans, Albania, Amhara, Arab, Armenia, Azerbaijan, Bahasa Indonesia, Basque, Belanda, Belarussia, Bengali, Bosnia, Bulgaria, Burma, Cebuano, Ceko, Chichewa, China, Cina Tradisional, Denmark, Deteksi bahasa, Esperanto, Estonia, Farsi, Finlandia, Frisia, Gaelig, Gaelik Skotlandia, Galisia, Georgia, Gujarati, Hausa, Hawaii, Hindi, Hmong, Ibrani, Igbo, Inggris, Islan, Italia, Jawa, Jepang, Jerman, Kannada, Katala, Kazak, Khmer, Kinyarwanda, Kirghiz, Klingon, Korea, Korsika, Kreol Haiti, Kroat, Kurdi, Laos, Latin, Latvia, Lituania, Luksemburg, Magyar, Makedonia, Malagasi, Malayalam, Malta, Maori, Marathi, Melayu, Mongol, Nepal, Norsk, Odia (Oriya), Pashto, Polandia, Portugis, Prancis, Punjabi, Rumania, Rusia, Samoa, Serb, Sesotho, Shona, Sindhi, Sinhala, Slovakia, Slovenia, Somali, Spanyol, Sunda, Swahili, Swensk, Tagalog, Tajik, Tamil, Tatar, Telugu, Thai, Turki, Turkmen, Ukraina, Urdu, Uyghur, Uzbek, Vietnam, Wales, Xhosa, Yiddi, Yoruba, Yunani, Zulu, Bahasa terjemahan.

Copyright ©2025 I Love Translation. All reserved.

E-mail: