with the observed value α ≈ 0.6 for a broad range of growth rates(disc terjemahan - with the observed value α ≈ 0.6 for a broad range of growth rates(disc Bahasa Indonesia Bagaimana mengatakan

with the observed value α ≈ 0.6 for

with the observed value α ≈ 0.6 for a broad range of growth rates
(discussed below), to define a ribosome-affiliated proteome fraction
ϕR ≡ϕRb + ϕT =ð1 +αÞ · ϕRb. This amounts to increasing the
unit mass of ribosomal proteins to (1 + α) mRb, leading to the
relation
λ=γRϕR −ϕR;0 [6]
replacing Eq. 3, with γR =k=½ð1 +αÞ ·mRb.
The dependence of the growth rate on the nutrient quality (ν)
and the elongation rate (γR) is derived in Scott et al.’s theory by
simultaneously solving Eqs. 4 and 6 subject to the constraint
ϕR + ϕP +ϕQ = 1, where ϕQ is a growth-rate–independent proteome
fraction. (Data in ref. 11 suggest a value ϕQ ≈ 55%.) The
results are summarized in Fig. 2A and in SI Text.
In this work, we examine in detail the effect of the cell’s allocation
of the tRNA-affiliated fraction (T-fraction), ϕT, on the
growth rate. To investigate the trade-off between a high translation
speed and a high proteome fraction of T-proteins, the translation
speed γ is now taken to depend on ϕT. This dependence
is again described by a Michaelis–Menten relation (22),
γðφTÞ=γmax
ϕT
ϕT +φM
: [7]
This relation follows from the Michaelis–Menten relation of the
translation speed on the ternary complex concentration cT (22),
k= kelongcT=ðKM +cTÞ, by defining a rescaled maximal translation
speed γmax = kelong/mRb and by expressing concentrations in
terms of the corresponding proteome fractions (ϕT = σcT, with
σ ≈ 2:5 × 10−4μM−1) (Methods). The Michaelis constant φM in
Eq. 7 is thus also expressed in units of a proteome fraction; it
is related to the usual Michaelis constant, KM (estimated above),
via φM =σKM × nt, where nt ≈ 30 is the number of different
tRNAs (not counting some rare tRNAs) (Methods), such that
each codon sees a tRNA concentration of KM. The translation
speed actually depends on the fraction of charged T-proteins and
not the total pool ϕT. In moderate-to-fast growth, the charged
fraction of tRNA is 70–80% (32), leading to an effective rescaling
of the Michaelis constant φM. Here, we do not include an
explicit partitioning between charged and uncharged T-proteins.
The four-component proteome model is thus defined by Eqs. 3
and 4, with γ given by Eq. 7, subject to the proteome constraint
ϕRb +ϕT + ϕP +ϕQ = 1: [8]
This model provides the growth rate λ and the proteome fractions
ϕRb and ϕP for different choices of the T-fraction ϕT,
once the parameters ν, γmax, and φM are specified. In the following,
we assume that ϕT = α ϕRb, with a constant (growth-rate–
independent) α, an approximation consistent with observed
ratios of EF-Tu to ribosomes (see below). The (approximate) proportionality
reflects the coregulation of ribosomal proteins and
elongation factors, which are found in the same operons (likewise,
many tRNA genes are in ribosomal RNA operons) (1).
0/5000
Dari: -
Ke: -
Hasil (Bahasa Indonesia) 1: [Salinan]
Disalin!
with the observed value α ≈ 0.6 for a broad range of growth rates(discussed below), to define a ribosome-affiliated proteome fractionϕR ≡ϕRb + ϕT =ð1 +αÞ · ϕRb. This amounts to increasing theunit mass of ribosomal proteins to (1 + α) mRb, leading to therelationλ=γRϕR −ϕR;0 [6]replacing Eq. 3, with γR =k=½ð1 +αÞ ·mRb.The dependence of the growth rate on the nutrient quality (ν)and the elongation rate (γR) is derived in Scott et al.’s theory bysimultaneously solving Eqs. 4 and 6 subject to the constraintϕR + ϕP +ϕQ = 1, where ϕQ is a growth-rate–independent proteomefraction. (Data in ref. 11 suggest a value ϕQ ≈ 55%.) Theresults are summarized in Fig. 2A and in SI Text.In this work, we examine in detail the effect of the cell’s allocationof the tRNA-affiliated fraction (T-fraction), ϕT, on thegrowth rate. To investigate the trade-off between a high translationspeed and a high proteome fraction of T-proteins, the translationspeed γ is now taken to depend on ϕT. This dependenceis again described by a Michaelis–Menten relation (22),γðφTÞ=γmaxϕTϕT +φM: [7]This relation follows from the Michaelis–Menten relation of thetranslation speed on the ternary complex concentration cT (22),k= kelongcT=ðKM +cTÞ, by defining a rescaled maximal translationspeed γmax = kelong/mRb and by expressing concentrations interms of the corresponding proteome fractions (ϕT = σcT, withσ ≈ 2:5 × 10−4μM−1) (Methods). The Michaelis constant φM inEq. 7 is thus also expressed in units of a proteome fraction; itis related to the usual Michaelis constant, KM (estimated above),via φM =σKM × nt, where nt ≈ 30 is the number of differenttRNAs (not counting some rare tRNAs) (Methods), such thateach codon sees a tRNA concentration of KM. The translationspeed actually depends on the fraction of charged T-proteins andnot the total pool ϕT. In moderate-to-fast growth, the chargedfraction of tRNA is 70–80% (32), leading to an effective rescalingof the Michaelis constant φM. Here, we do not include anexplicit partitioning between charged and uncharged T-proteins.The four-component proteome model is thus defined by Eqs. 3and 4, with γ given by Eq. 7, subject to the proteome constraintϕRb +ϕT + ϕP +ϕQ = 1: [8]This model provides the growth rate λ and the proteome fractionsϕRb and ϕP for different choices of the T-fraction ϕT,once the parameters ν, γmax, and φM are specified. In the following,we assume that ϕT = α ϕRb, with a constant (growth-rate–independent) α, an approximation consistent with observedratios of EF-Tu to ribosomes (see below). The (approximate) proportionalityreflects the coregulation of ribosomal proteins andelongation factors, which are found in the same operons (likewise,many tRNA genes are in ribosomal RNA operons) (1).
Sedang diterjemahkan, harap tunggu..
Hasil (Bahasa Indonesia) 2:[Salinan]
Disalin!
dengan nilai yang diamati α ≈ 0,6 untuk berbagai tingkat pertumbuhan
(dibahas di bawah), untuk menentukan fraksi proteoma ribosom berafiliasi
φR ≡φRb + φT = D1 + αÞ · φRb. Jumlah ini meningkatkan
massa unit protein ribosom untuk (1 + α) MRB, yang mengarah ke
hubungan
λ = γR φR -φR;? 0? [6]
menggantikan Pers. 3, dengan γR = k = ½ð1 + αÞ · MRB ?.
Ketergantungan tingkat pertumbuhan pada kualitas nutrisi (ν)
dan tingkat elongasi (γR) berasal di Scott et al. teori dengan
secara simultan memecahkan Pers. 4 dan 6 tunduk pada kendala
φR + + φP φQ = 1, di mana φQ adalah proteoma pertumbuhan tingkat independen
fraksi. (Data di ref. 11 menunjukkan nilai φQ ≈ 55%.) The
hasilnya dirangkum dalam Gambar. 2A dan SI Teks.
Dalam karya ini, kita memeriksa secara rinci pengaruh alokasi sel
dari fraksi tRNA berafiliasi (T-fraksi), φT, pada
tingkat pertumbuhan. Untuk menyelidiki trade-off antara terjemahan tinggi
kecepatan dan fraksi proteoma tinggi T-protein, terjemahan
γ kecepatan sekarang diambil bergantung pada φT. Ketergantungan ini
sekali lagi dijelaskan oleh hubungan Michaelis Menten-(22),
γðφTÞ = γmax
φT
φT + φM
: [7]
Hubungan ini mengikuti dari hubungan Michaelis Menten-dari
kecepatan penerjemahan pada konsentrasi kompleks terner cT (22),
k = kelongcT = DKM + cTÞ, dengan mendefinisikan rescaled maksimal terjemahan
kecepatan γmax = kelong / MRB dan dengan mengekspresikan konsentrasi dalam
hal fraksi proteome sesuai (φT = σcT, dengan
σ ≈ 2: 5 × 10-4μM-1) (Metode ). The Michaelis φM konstan dalam
Pers. 7 demikian juga dinyatakan dalam satuan pecahan proteoma; itu
terkait dengan Michaelis biasa konstan, KM (diperkirakan di atas),
melalui φM = σKM × nt, di mana nt ≈ 30 adalah jumlah yang berbeda
tRNA (tidak termasuk beberapa langka tRNA) (Metode), sehingga
masing-masing kodon melihat tRNA konsentrasi KM. Terjemahan
kecepatan sebenarnya tergantung pada fraksi dibebankan T-protein dan
tidak total kolam φT. Dalam sedang sampai cepat pertumbuhan, dikenakan
fraksi tRNA adalah 70-80% (32), yang mengarah ke rescaling efektif
dari φM konstan Michaelis. Di sini, kita tidak termasuk
partisi eksplisit antara diisi dan bermuatan T-protein.
Model proteoma empat komponen yang didefinisikan oleh Pers. 3
dan 4, dengan γ diberikan oleh Persamaan. 7, tunduk pada kendala proteome
φRb + φT + + φP φQ = 1: [8]
Model ini memberikan λ tingkat pertumbuhan dan fraksi proteome
φRb dan φP untuk pilihan yang berbeda dari φT T-fraksi,
setelah parameter ν, γmax , dan φM ditentukan. Berikut ini,
kami mengasumsikan bahwa φT = α φRb, dengan konstan (pertumbuhan tingkat-
independen) α, perkiraan konsisten dengan diamati
rasio EF-Tu ribosom (lihat di bawah). The (perkiraan) proporsionalitas
mencerminkan coregulation protein ribosom dan
faktor elongasi, yang ditemukan dalam operon yang sama (juga,
banyak gen tRNA dalam operon RNA ribosom) (1).
Sedang diterjemahkan, harap tunggu..
 
Bahasa lainnya
Dukungan alat penerjemahan: Afrikans, Albania, Amhara, Arab, Armenia, Azerbaijan, Bahasa Indonesia, Basque, Belanda, Belarussia, Bengali, Bosnia, Bulgaria, Burma, Cebuano, Ceko, Chichewa, China, Cina Tradisional, Denmark, Deteksi bahasa, Esperanto, Estonia, Farsi, Finlandia, Frisia, Gaelig, Gaelik Skotlandia, Galisia, Georgia, Gujarati, Hausa, Hawaii, Hindi, Hmong, Ibrani, Igbo, Inggris, Islan, Italia, Jawa, Jepang, Jerman, Kannada, Katala, Kazak, Khmer, Kinyarwanda, Kirghiz, Klingon, Korea, Korsika, Kreol Haiti, Kroat, Kurdi, Laos, Latin, Latvia, Lituania, Luksemburg, Magyar, Makedonia, Malagasi, Malayalam, Malta, Maori, Marathi, Melayu, Mongol, Nepal, Norsk, Odia (Oriya), Pashto, Polandia, Portugis, Prancis, Punjabi, Rumania, Rusia, Samoa, Serb, Sesotho, Shona, Sindhi, Sinhala, Slovakia, Slovenia, Somali, Spanyol, Sunda, Swahili, Swensk, Tagalog, Tajik, Tamil, Tatar, Telugu, Thai, Turki, Turkmen, Ukraina, Urdu, Uyghur, Uzbek, Vietnam, Wales, Xhosa, Yiddi, Yoruba, Yunani, Zulu, Bahasa terjemahan.

Copyright ©2024 I Love Translation. All reserved.

E-mail: