Drawing conclusions about the dependent variable requires that we make terjemahan - Drawing conclusions about the dependent variable requires that we make Bahasa Indonesia Bagaimana mengatakan

Drawing conclusions about the depen

Drawing conclusions about the dependent variable requires that we make six assumptions, the classic assumptions in relation to the linear regression model:

The relationship between the dependent variable Y and the independent variable X is linear in the slope and intercept parameters a and b. This requirement means that neither regression parameter can be multiplied or divided by another regression parameter (e.g. a/b), and that both parameters are raised to the first power only. In other words, we can't construct a linear model where the equation was Y = a + b2X + ε, as unit changes in X would then have a b2 effect on a, and the relation would be nonlinear.
The independent variable X is not random.
The expected value of the error term "ε" is 0. Assumptions #2 and #3 allow the linear regression model to produce estimates for slope b and intercept a.
The variance of the error term is constant for all observations. Assumption #4 is known as the "homoskedasticity assumption". When a linear regression is heteroskedastic its error terms vary and the model may not be useful in predicting values of the dependent variable.
The error term ε is uncorrelated across observations; in other words, the covariance between the error term of one observation and the error term of the other is assumed to be 0. This assumption is necessary to estimate the variances of the parameters.
The distribution of the error terms is normal. Assumption #6 allows hypothesis-testing methods to be applied to linear-regression models.

0/5000
Dari: -
Ke: -
Hasil (Bahasa Indonesia) 1: [Salinan]
Disalin!
Drawing conclusions about the dependent variable requires that we make six assumptions, the classic assumptions in relation to the linear regression model:The relationship between the dependent variable Y and the independent variable X is linear in the slope and intercept parameters a and b. This requirement means that neither regression parameter can be multiplied or divided by another regression parameter (e.g. a/b), and that both parameters are raised to the first power only. In other words, we can't construct a linear model where the equation was Y = a + b2X + ε, as unit changes in X would then have a b2 effect on a, and the relation would be nonlinear.The independent variable X is not random.The expected value of the error term "ε" is 0. Assumptions #2 and #3 allow the linear regression model to produce estimates for slope b and intercept a.The variance of the error term is constant for all observations. Assumption #4 is known as the "homoskedasticity assumption". When a linear regression is heteroskedastic its error terms vary and the model may not be useful in predicting values of the dependent variable.The error term ε is uncorrelated across observations; in other words, the covariance between the error term of one observation and the error term of the other is assumed to be 0. This assumption is necessary to estimate the variances of the parameters.The distribution of the error terms is normal. Assumption #6 allows hypothesis-testing methods to be applied to linear-regression models.
Sedang diterjemahkan, harap tunggu..
Hasil (Bahasa Indonesia) 2:[Salinan]
Disalin!
Menarik kesimpulan tentang variabel dependen mengharuskan kita membuat enam asumsi, asumsi klasik dalam kaitannya dengan model regresi linier: Hubungan antara variabel dependen Y dan independen variabel X adalah linier di lereng dan intercept parameter a dan b. Persyaratan ini berarti bahwa parameter regresi tidak dapat dikalikan atau dibagi dengan parameter regresi lain (misalnya / b), dan bahwa kedua parameter pangkat pertama saja. Dengan kata lain, kita tidak bisa membangun sebuah model linier di mana persamaan adalah Y = a + b2X + ε, seperti perubahan unit X maka akan memiliki efek b2 pada, dan hubungan akan nonlinier. Variabel X independen adalah tidak acak. Nilai yang diharapkan dari istilah kesalahan "ε" 0 Asumsi # 2 dan # 3 memungkinkan model regresi linear untuk menghasilkan perkiraan untuk kemiringan b dan mencegat. Varians dari istilah kesalahan konstan untuk semua pengamatan. Asumsi # 4 dikenal sebagai "homoskedasticity asumsi". Ketika regresi linear adalah heteroskedastic hal kesalahan yang bervariasi dan model mungkin tidak berguna dalam memprediksi nilai variabel dependen. The ε jangka kesalahan berkorelasi seluruh pengamatan; dengan kata lain, kovarians antara jangka kesalahan satu observasi dan istilah kesalahan yang lain diasumsikan 0. Asumsi ini diperlukan untuk memperkirakan varians parameter. Distribusi istilah kesalahan adalah normal. Asumsi # 6 memungkinkan metode hipotesis-pengujian yang akan diterapkan untuk model linear regresi.








Sedang diterjemahkan, harap tunggu..
 
Bahasa lainnya
Dukungan alat penerjemahan: Afrikans, Albania, Amhara, Arab, Armenia, Azerbaijan, Bahasa Indonesia, Basque, Belanda, Belarussia, Bengali, Bosnia, Bulgaria, Burma, Cebuano, Ceko, Chichewa, China, Cina Tradisional, Denmark, Deteksi bahasa, Esperanto, Estonia, Farsi, Finlandia, Frisia, Gaelig, Gaelik Skotlandia, Galisia, Georgia, Gujarati, Hausa, Hawaii, Hindi, Hmong, Ibrani, Igbo, Inggris, Islan, Italia, Jawa, Jepang, Jerman, Kannada, Katala, Kazak, Khmer, Kinyarwanda, Kirghiz, Klingon, Korea, Korsika, Kreol Haiti, Kroat, Kurdi, Laos, Latin, Latvia, Lituania, Luksemburg, Magyar, Makedonia, Malagasi, Malayalam, Malta, Maori, Marathi, Melayu, Mongol, Nepal, Norsk, Odia (Oriya), Pashto, Polandia, Portugis, Prancis, Punjabi, Rumania, Rusia, Samoa, Serb, Sesotho, Shona, Sindhi, Sinhala, Slovakia, Slovenia, Somali, Spanyol, Sunda, Swahili, Swensk, Tagalog, Tajik, Tamil, Tatar, Telugu, Thai, Turki, Turkmen, Ukraina, Urdu, Uyghur, Uzbek, Vietnam, Wales, Xhosa, Yiddi, Yoruba, Yunani, Zulu, Bahasa terjemahan.

Copyright ©2025 I Love Translation. All reserved.

E-mail: