The most common method of purifying solid organic compounds is by recr terjemahan - The most common method of purifying solid organic compounds is by recr Bahasa Indonesia Bagaimana mengatakan

The most common method of purifying

The most common method of purifying solid organic compounds is by recrystallization. In this technique, an impure solid compound is dissolved in a solvent and then allowed to slowly crystallize out as the solution cools. As the compound crystallizes from the solution, the molecules of the other compounds dissolved in solution are excluded from the growing crystal lattice, giving a pure solid.Crystallization of a solid is not the same as precipitation of a solid. In crystallization, there is a slow, selective formation of the crystal framework resulting in a pure compound. In precipitation, there is a rapid formation of a solid from a solution that usually produces an amorphous solid containing many trapped impurities within the solid's crystal framework. For this reason, experimental procedures that produce a solid product by precipitation always include a final recrystallization step to give the pure compound.The process of recrystallization relies on the property that for most compounds, as the temperature of a solvent increases, the solubility of the compound in that solvent also increases. For example, much more table sugar can be dissolved in very hot water (just below the boiling point) than in water at room temperature. What will happen if a concentrated solution of hot water and sugar is allowed to cool to room temperature? As the temperature of the solution decreases, the solubility of the sugar in the water also decreases, and the sugar molecules will begin to crystallize out of the solution. (This is how rock candy is made.) This is the basic process that goes on in the recrystallization of a solid.

The steps in the recrystallization of a compound are:

Find a suitable solvent for the recrystallization;Dissolve the impure solid in a minimum volume of hot solvent;Remove any insoluble impurities by filtration;Slowly cool the hot solution to crystallize the desired compound from the solution;Filter the solution to isolate the purified solid compound.

Choosing a solvent

The first consideration in purifying a solid by recrystallization is to find a suitable solvent. There are four important properties that you should look for in a good solvent for recrystallization.The compound should be very soluble at the boiling point of the solvent and only sparingly soluble in the solvent at room temperature. This difference in solubility at hot versus cold temperatures is essential for the recrystallization process. If the compound is insoluble in the chosen solvent at high temperatures, then it will not dissolve. If the compound is very soluble in the solvent at room temperature, then getting the compound to crystallize in pure form from solution is difficult. For example, water is an excellent solvent for the recrystallization of benzoic acid. At 10°C only 2.1 g of benzoic acid dissolves in 1 liter of water, while at 95 °C the solubility is 68 g/L.The unwanted impurities should be either very soluble in the solvent at room temperature or insoluble in the hot solvent. This way, after the impure solid is dissolved in the hot solvent, any undissolved impurities can be removed by filtration. After the solution cools and the desired compound crystallizes out, any remaining soluble impurities will remain dissolved in the solvent.The solvent should not react with the compound being purified. The desired compound may be lost during recrystallization if the solvent reacts with the compound.The solvent should be volatile enough to be easily removed from the solvent after the compound has crystallized. This allows for easy and rapid drying of the solid compound after it has been isolated from the solution.Finding a solvent with the desired properties is a search done by trial and error. First, test the solubility of tiny samples of the compound in test tubes with a variety of different solvents (water, ethanol, methanol, ethyl acetate, diethyl ether, hexane, toluene, etc.) at room temperature. If the compound dissolves in the solvent at room temperature, then that solvent is unsuitable for recrystallization. If the compound is insoluble in the solvent at room temperature, then the mixture is heated to the solvent's boiling point to determine if the solid will dissolve at high temperature, and then cooled to see whether it crystallizes from the solution at room temperature.

Dissolving the solid

Once a suitable solvent is selected, place the impure solid in an Erlenmeyer flask and add a small volume of hot solvent to the flask. Erlenmeyer flasks are preferred over beakers for recrystallization because the conical shape of an Erlenmeyer flask decreases the amount of solvent lost to evaporation during heating, prevents the formation of a crust around the sides of the glass, and makes it easier to swirl the hot solution while dissolving the solid without splashing it out of the flask.Keep the solution in the Erlenmeyer flask warm on a hot plate or in a water bath, and add small volumes of hot solvent to the flask until all of the solid just dissolves. Swirl the solution between additions of solvent and break up any lumps with a stirring rod or spatula. Occasionally there will be impurities present in the solid that are insoluble in the chosen solvent even at high temperature. If subsequent additions of solvent to the solution do not seem to dissolve any of the remaining solid, stop adding solvent to the solution (as this will decrease the percent recovery of the desired compound) and filter or decant the hot solution to remove the insoluble impurities.

Using decolorizing carbon

Colored impurities are sometimes difficult to remove from solid mixtures. These colored impurities, often due to the presence of polar or polymeric compounds, can cause a colorless organic solid to have a tint of color even after recrystallization. Decolorizing or activated carbon is used to remove the colored impurities from the sample. Decolorizing carbon is very finely divided carbon that provides high surface area to adsorb the colored impurities.Very little decolorizing carbon is needed to remove the colored impurities from a solution. You must be judicious in your use of decolorizing carbon: if too much is used, it can adsorb the desired compound from the solution as well as the colored impurities. After the impure solid sample is dissolved in hot solvent, a small amount of decolorizing carbon, about the size of a pea, is added to the hot solution. This must be done carefully to avoid a surge of boiling from the hot solution. The solution is stirred and heated for a few minutes and then filtered hot to remove the decolorizing carbon. The resulting filtrate should be colorless and the recrystallization process continues as before.

Crystallizing the solid

After the insoluble impurities have been removed, cover the flask containing the hot filtrate with a watch glass and set it aside undisturbed to cool slowly to room temperature. As the solution cools, the solubility of the dissolved compound will decrease and the solid will begin to crystallize from the solution. After the flask has cooled to room temperature, it may be placed in an ice bath to increase the yield of solid. Do not rapidly cool the hot solution by placing the flask in an ice bath before it has cooled to room temperature-this will result in a rapid precipitation of the solid in an impure form because of trapped impurities.Sometimes the dissolved compound fails to crystallize from the solution on cooling. If this happens, crystallization can be induced by various methods. One way to induce crystallization is by scratching the inner wall of the Erlenmeyer flask with a glass stirring rod. This is believed to release very small particles of glass which act as nuclei for crystal growth. Another method of inducing crystallization is to add a small crystal of the desired compound, called a seed crystal, to the solution. Again, this seed crystal acts as a template on which the dissolved solid will begin crystallizing. If neither of these two techniques results in crystallization, the compound was probably dissolved in too much hot solvent. If you believe that you may have too much solvent for the amount of dissolved compound, reheat the solution to boiling, boil off or distill some of the solvent, and then allow the solution to cool to room temperature again to effect crystallization.

Isolating the solid by suction filtration

Once the compound has completely precipitated from the solution, it is separated from the remaining solution (also called the mother liquor) by filtration. Typically this is done by vacuum or suction filtration using a Büchner funnel. Line the bottom of the Büchner or Hirsch funnel with a piece of filter paper that is large enough to cover the holes in the bottom plate of the funnel without curling up on the sides of the funnel. Place a neoprene adapter on the stem of the funnel and insert it in the top of a filter flask (a thick-walled Erlenmeyer flask with a side-arm) that has been securely clamped to a ringstand.Using a piece of thick-walled vacuum tubing, connect the side-arm of the filter flask to a water aspirator. Turn the water to the aspirator on full force to create a vacuum through the system. If necessary, carefully adjust the piece of filter paper so that it covers all of the holes in the funnel, and then dampen it with a small volume of cold solvent; this will create a better seal between the filter paper and the plate in the funnel, preventing any solid from getting under the filter paper and passing through the funnel. Slowly pour the recrystallization solution into the funnel and allow the suction to pull the mother liquor through. Rinse the Erlenmeyer flask with a small volume of cold recrystallization solvent to remove any remaining solid. Add this solvent to the funnel and then wash the solid in the funnel, called the filter cake or residue, with a few milliliters of fresh, cold recrystallization solvent to remove any remaining mother liquo
0/5000
Dari: -
Ke: -
Hasil (Bahasa Indonesia) 1: [Salinan]
Disalin!
The most common method of purifying solid organic compounds is by recrystallization. In this technique, an impure solid compound is dissolved in a solvent and then allowed to slowly crystallize out as the solution cools. As the compound crystallizes from the solution, the molecules of the other compounds dissolved in solution are excluded from the growing crystal lattice, giving a pure solid.Crystallization of a solid is not the same as precipitation of a solid. In crystallization, there is a slow, selective formation of the crystal framework resulting in a pure compound. In precipitation, there is a rapid formation of a solid from a solution that usually produces an amorphous solid containing many trapped impurities within the solid's crystal framework. For this reason, experimental procedures that produce a solid product by precipitation always include a final recrystallization step to give the pure compound.The process of recrystallization relies on the property that for most compounds, as the temperature of a solvent increases, the solubility of the compound in that solvent also increases. For example, much more table sugar can be dissolved in very hot water (just below the boiling point) than in water at room temperature. What will happen if a concentrated solution of hot water and sugar is allowed to cool to room temperature? As the temperature of the solution decreases, the solubility of the sugar in the water also decreases, and the sugar molecules will begin to crystallize out of the solution. (This is how rock candy is made.) This is the basic process that goes on in the recrystallization of a solid.

The steps in the recrystallization of a compound are:

Find a suitable solvent for the recrystallization;Dissolve the impure solid in a minimum volume of hot solvent;Remove any insoluble impurities by filtration;Slowly cool the hot solution to crystallize the desired compound from the solution;Filter the solution to isolate the purified solid compound.

Choosing a solvent

The first consideration in purifying a solid by recrystallization is to find a suitable solvent. There are four important properties that you should look for in a good solvent for recrystallization.The compound should be very soluble at the boiling point of the solvent and only sparingly soluble in the solvent at room temperature. This difference in solubility at hot versus cold temperatures is essential for the recrystallization process. If the compound is insoluble in the chosen solvent at high temperatures, then it will not dissolve. If the compound is very soluble in the solvent at room temperature, then getting the compound to crystallize in pure form from solution is difficult. For example, water is an excellent solvent for the recrystallization of benzoic acid. At 10°C only 2.1 g of benzoic acid dissolves in 1 liter of water, while at 95 °C the solubility is 68 g/L.The unwanted impurities should be either very soluble in the solvent at room temperature or insoluble in the hot solvent. This way, after the impure solid is dissolved in the hot solvent, any undissolved impurities can be removed by filtration. After the solution cools and the desired compound crystallizes out, any remaining soluble impurities will remain dissolved in the solvent.The solvent should not react with the compound being purified. The desired compound may be lost during recrystallization if the solvent reacts with the compound.The solvent should be volatile enough to be easily removed from the solvent after the compound has crystallized. This allows for easy and rapid drying of the solid compound after it has been isolated from the solution.Finding a solvent with the desired properties is a search done by trial and error. First, test the solubility of tiny samples of the compound in test tubes with a variety of different solvents (water, ethanol, methanol, ethyl acetate, diethyl ether, hexane, toluene, etc.) at room temperature. If the compound dissolves in the solvent at room temperature, then that solvent is unsuitable for recrystallization. If the compound is insoluble in the solvent at room temperature, then the mixture is heated to the solvent's boiling point to determine if the solid will dissolve at high temperature, and then cooled to see whether it crystallizes from the solution at room temperature.

Dissolving the solid

Once a suitable solvent is selected, place the impure solid in an Erlenmeyer flask and add a small volume of hot solvent to the flask. Erlenmeyer flasks are preferred over beakers for recrystallization because the conical shape of an Erlenmeyer flask decreases the amount of solvent lost to evaporation during heating, prevents the formation of a crust around the sides of the glass, and makes it easier to swirl the hot solution while dissolving the solid without splashing it out of the flask.Keep the solution in the Erlenmeyer flask warm on a hot plate or in a water bath, and add small volumes of hot solvent to the flask until all of the solid just dissolves. Swirl the solution between additions of solvent and break up any lumps with a stirring rod or spatula. Occasionally there will be impurities present in the solid that are insoluble in the chosen solvent even at high temperature. If subsequent additions of solvent to the solution do not seem to dissolve any of the remaining solid, stop adding solvent to the solution (as this will decrease the percent recovery of the desired compound) and filter or decant the hot solution to remove the insoluble impurities.

Using decolorizing carbon

Colored impurities are sometimes difficult to remove from solid mixtures. These colored impurities, often due to the presence of polar or polymeric compounds, can cause a colorless organic solid to have a tint of color even after recrystallization. Decolorizing or activated carbon is used to remove the colored impurities from the sample. Decolorizing carbon is very finely divided carbon that provides high surface area to adsorb the colored impurities.Very little decolorizing carbon is needed to remove the colored impurities from a solution. You must be judicious in your use of decolorizing carbon: if too much is used, it can adsorb the desired compound from the solution as well as the colored impurities. After the impure solid sample is dissolved in hot solvent, a small amount of decolorizing carbon, about the size of a pea, is added to the hot solution. This must be done carefully to avoid a surge of boiling from the hot solution. The solution is stirred and heated for a few minutes and then filtered hot to remove the decolorizing carbon. The resulting filtrate should be colorless and the recrystallization process continues as before.

Crystallizing the solid

After the insoluble impurities have been removed, cover the flask containing the hot filtrate with a watch glass and set it aside undisturbed to cool slowly to room temperature. As the solution cools, the solubility of the dissolved compound will decrease and the solid will begin to crystallize from the solution. After the flask has cooled to room temperature, it may be placed in an ice bath to increase the yield of solid. Do not rapidly cool the hot solution by placing the flask in an ice bath before it has cooled to room temperature-this will result in a rapid precipitation of the solid in an impure form because of trapped impurities.Sometimes the dissolved compound fails to crystallize from the solution on cooling. If this happens, crystallization can be induced by various methods. One way to induce crystallization is by scratching the inner wall of the Erlenmeyer flask with a glass stirring rod. This is believed to release very small particles of glass which act as nuclei for crystal growth. Another method of inducing crystallization is to add a small crystal of the desired compound, called a seed crystal, to the solution. Again, this seed crystal acts as a template on which the dissolved solid will begin crystallizing. If neither of these two techniques results in crystallization, the compound was probably dissolved in too much hot solvent. If you believe that you may have too much solvent for the amount of dissolved compound, reheat the solution to boiling, boil off or distill some of the solvent, and then allow the solution to cool to room temperature again to effect crystallization.

Isolating the solid by suction filtration

Once the compound has completely precipitated from the solution, it is separated from the remaining solution (also called the mother liquor) by filtration. Typically this is done by vacuum or suction filtration using a Büchner funnel. Line the bottom of the Büchner or Hirsch funnel with a piece of filter paper that is large enough to cover the holes in the bottom plate of the funnel without curling up on the sides of the funnel. Place a neoprene adapter on the stem of the funnel and insert it in the top of a filter flask (a thick-walled Erlenmeyer flask with a side-arm) that has been securely clamped to a ringstand.Using a piece of thick-walled vacuum tubing, connect the side-arm of the filter flask to a water aspirator. Turn the water to the aspirator on full force to create a vacuum through the system. If necessary, carefully adjust the piece of filter paper so that it covers all of the holes in the funnel, and then dampen it with a small volume of cold solvent; this will create a better seal between the filter paper and the plate in the funnel, preventing any solid from getting under the filter paper and passing through the funnel. Slowly pour the recrystallization solution into the funnel and allow the suction to pull the mother liquor through. Rinse the Erlenmeyer flask with a small volume of cold recrystallization solvent to remove any remaining solid. Add this solvent to the funnel and then wash the solid in the funnel, called the filter cake or residue, with a few milliliters of fresh, cold recrystallization solvent to remove any remaining mother liquo
Sedang diterjemahkan, harap tunggu..
Hasil (Bahasa Indonesia) 2:[Salinan]
Disalin!
Metode yang paling umum memurnikan senyawa organik padat adalah dengan rekristalisasi. Dalam teknik ini, suatu senyawa padat murni dilarutkan dalam pelarut dan kemudian dibiarkan perlahan mengkristal sebagai solusi mendingin. Sebagai senyawa mengkristal dari larutan, molekul dari senyawa lain dilarutkan dalam larutan dikecualikan dari kisi kristal tumbuh, memberikan solid.Crystallization murni yang solid tidak sama dengan curah hujan yang solid. Dalam kristalisasi, ada, pembentukan selektif lambat kerangka kristal menghasilkan senyawa murni. Curah hujan, ada formasi cepat yang solid dari solusi yang biasanya menghasilkan padatan amorf yang mengandung banyak kotoran terjebak dalam kerangka kristal padat itu. Untuk alasan ini, prosedur eksperimental yang menghasilkan produk yang solid dengan curah hujan selalu menyertakan langkah rekristalisasi akhir untuk memberikan proses compound.The murni rekristalisasi bergantung pada properti yang untuk sebagian besar senyawa, seperti suhu yang meningkat pelarut, kelarutan senyawa dalam pelarut yang juga meningkat. Sebagai contoh, lebih banyak gula meja dapat larut dalam air yang sangat panas (tepat di bawah titik didih) dibandingkan dalam air pada suhu kamar. Apa yang akan terjadi jika suatu larutan pekat dari air panas dan gula dibiarkan dingin sampai suhu kamar? Sebagai suhu larutan menurun, kelarutan gula dalam air juga menurun, dan molekul gula akan mulai mengkristal keluar dari solusi. (Ini adalah bagaimana gula batu dibuat.) Ini adalah proses dasar yang terjadi di rekristalisasi solid. Langkah-langkah dalam rekristalisasi senyawa adalah: Cari pelarut yang sesuai untuk rekristalisasi; Larutkan murni solid dalam minimum volume pelarut panas; Hapus semua kotoran larut dengan penyaringan, Perlahan mendinginkan larutan panas mengkristal senyawa yang diinginkan dari solusi, Filter solusi untuk mengisolasi senyawa padat murni. Memilih pelarut Pertimbangan pertama dalam memurnikan padat oleh rekristalisasi adalah menemukan pelarut yang sesuai. Ada empat sifat penting yang harus Anda cari dalam pelarut yang baik untuk senyawa recrystallization.The harus sangat larut pada titik didih pelarut dan hanya sedikit larut dalam pelarut pada suhu kamar. Perbedaan dalam kelarutan pada suhu panas dibandingkan dingin sangat penting untuk proses rekristalisasi. Jika senyawa ini tidak larut dalam pelarut yang dipilih pada suhu tinggi, maka tidak akan larut. Jika senyawa ini sangat larut dalam pelarut pada suhu kamar, kemudian mendapatkan senyawa yang mengkristal dalam bentuk murni dari larutan sulit. Sebagai contoh, air adalah pelarut yang sangat baik untuk rekristalisasi asam benzoat. Pada 10 ° C hanya 2,1 g asam benzoat larut dalam 1 liter air, sementara pada 95 ° C larut dalam air adalah 68 g / L.The kotoran yang tidak diinginkan harus baik sangat larut dalam pelarut pada suhu kamar atau tidak larut dalam pelarut panas . Dengan cara ini, setelah tidak murni padat dilarutkan dalam pelarut panas, kotoran larut dapat dihilangkan dengan filtrasi. Setelah solusi mendinginkan dan senyawa yang diinginkan mengkristal, kotoran larut tersisa akan tetap terlarut dalam pelarut solvent.The tidak harus bereaksi dengan senyawa yang dimurnikan. Senyawa yang diinginkan dapat hilang selama rekristalisasi jika pelarut bereaksi dengan pelarut compound.The harus cukup stabil untuk dapat dengan mudah dihapus dari pelarut setelah senyawa telah mengkristal. Hal ini memungkinkan untuk pengeringan mudah dan cepat dari senyawa padat setelah telah diisolasi dari solution.Finding pelarut dengan sifat yang diinginkan adalah pencarian dilakukan dengan cara trial and error. Pertama, menguji kelarutan sampel kecil dari senyawa dalam tabung reaksi dengan berbagai pelarut yang berbeda (air, etanol, metanol, etil asetat, dietil eter, heksan, toluen, dll) pada suhu kamar. Jika senyawa larut dalam pelarut pada suhu kamar, maka pelarut yang cocok untuk rekristalisasi. Jika senyawa ini tidak larut dalam pelarut pada suhu kamar, kemudian campuran dipanaskan sampai titik didih pelarut untuk menentukan apakah padat akan larut pada suhu tinggi, dan kemudian didinginkan untuk melihat apakah itu mengkristal dari larutan pada suhu kamar. Pembubaran padat Setelah pelarut yang cocok dipilih, menempatkan murni padat dalam labu Erlenmeyer dan menambahkan volume kecil dari pelarut panas ke tabung. Labu Erlenmeyer lebih disukai daripada gelas untuk rekristalisasi karena bentuk kerucut dari labu Erlenmeyer menurunkan jumlah pelarut hilang penguapan selama pemanasan, mencegah pembentukan kerak di sekitar sisi kaca, dan membuatnya lebih mudah untuk berputar-putar solusi selagi panas melarutkan padat tanpa percikan keluar dari flask.Keep solusi dalam Erlenmeyer hangat di piring panas atau dalam bak air, dan menambahkan volume kecil dari pelarut panas untuk labu sampai seluruh padatan hanya larut. Aduk solusi antara penambahan pelarut dan memecah setiap benjolan dengan batang pengadukan atau spatula. Kadang-kadang akan ada kotoran hadir dalam padat yang tidak larut dalam pelarut yang dipilih bahkan pada suhu tinggi. Jika penambahan selanjutnya pelarut untuk solusi tampaknya tidak untuk membubarkan salah satu yang tersisa padat, berhenti menambahkan pelarut untuk solusi (karena hal ini akan mengurangi pemulihan persen senyawa yang diinginkan) dan filter atau tuang larutan panas untuk menghilangkan kotoran yang tidak larut . Menggunakan decolorizing karbon berwarna kotoran yang kadang-kadang sulit untuk menghapus dari campuran padat. Ini kotoran berwarna, sering disebabkan oleh adanya senyawa polar atau polimer, dapat menyebabkan berwarna organik padat untuk memiliki warna warna bahkan setelah rekristalisasi. Decolorizing atau karbon aktif digunakan untuk menghilangkan kotoran berwarna dari sampel. Decolorizing karbon sangat halus karbon dibagi yang menyediakan luas permukaan yang tinggi untuk menyerap berwarna impurities.Very sedikit decolorizing karbon diperlukan untuk menghilangkan kotoran berwarna dari solusi. Anda harus berhati-hati dalam penggunaan decolorizing karbon: jika terlalu banyak digunakan, dapat menyerap senyawa yang diinginkan dari larutan serta kotoran berwarna. Setelah sampel padat murni dilarutkan dalam pelarut panas, sejumlah kecil decolorizing karbon, seukuran kacang polong, ditambahkan ke dalam larutan panas. Hal ini harus dilakukan dengan hati-hati untuk menghindari lonjakan mendidih dari solusi panas. Solusinya diaduk dan dipanaskan selama beberapa menit dan kemudian disaring panas untuk menghilangkan karbon decolorizing. Filtrat yang dihasilkan harus berwarna dan proses rekristalisasi terus seperti sebelumnya. Kristalisasi padat Setelah kotoran larut telah dihapus, tutup botol yang berisi filtrat panas dengan kaca arloji dan sisihkan terganggu dingin perlahan-lahan sampai suhu kamar. Sebagai solusinya mendingin, kelarutan senyawa terlarut akan menurun dan padat akan mulai mengkristal dari larutan. Setelah labu telah didinginkan sampai suhu kamar, mungkin ditempatkan dalam penangas es untuk meningkatkan hasil yang solid. Jangan cepat mendinginkan larutan panas dengan menempatkan termos dalam penangas es sebelum dingin ke suhu kamar-ini akan menghasilkan curah hujan cepat dari solid dalam bentuk murni karena impurities.Sometimes terjebak senyawa terlarut gagal mengkristal dari solusi pada pendinginan. Jika ini terjadi, kristalisasi dapat disebabkan oleh berbagai metode. Salah satu cara untuk mendorong kristalisasi adalah dengan menggaruk dinding bagian dalam labu Erlenmeyer dengan batang pengaduk kaca. Hal ini diyakini untuk melepaskan partikel yang sangat kecil dari kaca yang bertindak sebagai inti untuk pertumbuhan kristal. Metode lain merangsang kristalisasi adalah menambahkan kristal kecil dari senyawa yang diinginkan, yang disebut kristal benih, untuk solusi. Sekali lagi, kristal benih ini bertindak sebagai template di mana padatan terlarut akan mulai mengkristal. Jika tak satu pun dari kedua teknik menghasilkan kristalisasi, senyawa itu mungkin dilarutkan dalam pelarut terlalu banyak panas. Jika Anda percaya bahwa Anda mungkin memiliki terlalu banyak pelarut untuk jumlah senyawa terlarut, panaskan solusi untuk mendidih, mendidih atau menyaring beberapa pelarut, dan kemudian memungkinkan solusi untuk mendinginkan suhu ruangan lagi untuk mempengaruhi kristalisasi. Mengisolasi padat melalui penyaringan isap Setelah senyawa telah benar-benar diendapkan dari larutan, dipisahkan dari larutan sisa (juga disebut larutan induk) dengan penyaringan. Biasanya hal ini dilakukan oleh vakum atau hisap filtrasi menggunakan corong Buchner. Garis bawah Buchner atau Hirsch corong dengan selembar kertas filter yang cukup besar untuk menutupi lubang-lubang di pelat bawah corong tanpa meringkuk di sisi corong. Tempatkan adaptor neoprene pada batang corong dan memasukkannya ke atas labu penyaring (a Erlenmeyer berdinding tebal dengan sisi-arm) yang telah aman dijepit ke ringstand.Using sepotong vakum berdinding tebal tubing, menghubungkan sisi-lengan labu penyaring untuk aspirator air. Mengubah air untuk aspirator pada kekuatan penuh untuk membuat vakum melalui sistem. Jika perlu, hati-hati mengatur potongan kertas saring sehingga mencakup semua lubang di corong, dan kemudian meredam dengan volume kecil pelarut dingin; ini akan membuat segel yang lebih baik antara kertas filter dan piring di corong, mencegah padat dari mendapatkan di bawah kertas saring dan melewati corong. Perlahan-lahan tuangkan larutan rekristalisasi menjadi corong dan memungkinkan hisap untuk menarik cairan induk melalui. Bilas labu Erlenmeyer dengan volume kecil pelarut rekristalisasi dingin untuk menghilangkan sisa padat. Menambahkan pelarut ini ke corong dan kemudian mencuci solid dalam corong, disebut filter cake atau residu, dengan beberapa mililiter segar, pelarut rekristalisasi dingin untuk menghilangkan liquo ibu yang tersisa























Sedang diterjemahkan, harap tunggu..
 
Bahasa lainnya
Dukungan alat penerjemahan: Afrikans, Albania, Amhara, Arab, Armenia, Azerbaijan, Bahasa Indonesia, Basque, Belanda, Belarussia, Bengali, Bosnia, Bulgaria, Burma, Cebuano, Ceko, Chichewa, China, Cina Tradisional, Denmark, Deteksi bahasa, Esperanto, Estonia, Farsi, Finlandia, Frisia, Gaelig, Gaelik Skotlandia, Galisia, Georgia, Gujarati, Hausa, Hawaii, Hindi, Hmong, Ibrani, Igbo, Inggris, Islan, Italia, Jawa, Jepang, Jerman, Kannada, Katala, Kazak, Khmer, Kinyarwanda, Kirghiz, Klingon, Korea, Korsika, Kreol Haiti, Kroat, Kurdi, Laos, Latin, Latvia, Lituania, Luksemburg, Magyar, Makedonia, Malagasi, Malayalam, Malta, Maori, Marathi, Melayu, Mongol, Nepal, Norsk, Odia (Oriya), Pashto, Polandia, Portugis, Prancis, Punjabi, Rumania, Rusia, Samoa, Serb, Sesotho, Shona, Sindhi, Sinhala, Slovakia, Slovenia, Somali, Spanyol, Sunda, Swahili, Swensk, Tagalog, Tajik, Tamil, Tatar, Telugu, Thai, Turki, Turkmen, Ukraina, Urdu, Uyghur, Uzbek, Vietnam, Wales, Xhosa, Yiddi, Yoruba, Yunani, Zulu, Bahasa terjemahan.

Copyright ©2025 I Love Translation. All reserved.

E-mail: