Abstract –The paper reports on experimental data on the extraction of  terjemahan - Abstract –The paper reports on experimental data on the extraction of  Bahasa Indonesia Bagaimana mengatakan

Abstract –The paper reports on expe

Abstract –

The paper reports on experimental data on the extraction of caffeine, coffee oil and chlorogenic acids from green coffee beans using pure supercritical CO2and supercritical CO2modified with ethanol (5% w/w) and isopropyl alcohol (5% w/w) at 50 and 60ºC and 15.2 24.8 e 35.2 MPa. In this study extraction kinetics were obtained for all assays i.e. samples were collected at several time intervals for each solvent and mixed solvent. When pure CO2and CO2-ethanol mixed solvent were used, an increase in pressure resulted in an increase in the amount of oil extracted. When CO2was modified with isopropyl alcohol, the amount of coffee oil extracted also increased with pressure. Caffeine extraction initially increased and subsequently decreased with pressure. Chlorogenic acids were only extracted when isopropyl alcohol was used as a cosolvent. An increase in extraction temperature resulted in a decrease of caffeine and oil extraction (retrograde condensation) when only CO2was used as solvent. With the use of co-solvent this retrograde behavior was no longer observed and the increase in temperature resulted in the increase in the extracted amounts of caffeine,
coffee oil and chlorogenic acids.

INTRODUCTION
Active principles obtained from natural products are widely used by the pharmaceutical, cosmetic and
food industries as raw materials for a large number of industrialized products (Cordel, 2000). Coffee
beans are an important source of some active principles. Caffeine, the most widely consumed alkaloid in the world, is found in coffee beans (approximately 1-2 wt.%), together with others valuable active principles in still higher concentration than caffeine. These active components include coffee oil, which is of special interest to the cosmetic and pharmaceutical industries, and chlorogenic acids to which several therapeutic properties have been attributed and are typically found in concentrations of 7-13 wt.% and 6-9 wt.%, respectively (Folstar, 1985, Clifford, 1985; Mazzafera et al. 1998; Lima et al., 2000)
Alkaloids, vegetable oils and chlorogenic acids are commonly extracted by conventional methods
using organic solvents (chloroform, dichloromethane, etc), which are dangerous to handle and harmful to human health and environment (Mohamed, 1997), and under severe process conditions which could result in product thermal degradation (particularly when steam distillation is involved). Despite the high extraction yield of these conventional processes, the selectivity is often low and the purification of the extracted products is very costly (Reverchon et al., 2000). Supercritical CO2extraction is among the new emerging clean and environmental friendly technologies for the processing of food and pharmaceutical products (Subramanian et al., 1997; Perrut, 2000). Alkaloids (Santana et al., 2006) and
phenolics (Okuno et al., 2002) have been extracted from plants using supercritical CO2. However, this
technique strongly depends on the solubility of lowvolatile substances in supercritical fluids, usually
CO2, a non-polar solvent, with low affinity for polar substances. So, the solubility of substances in supercritical CO2decreases with the increase in the number of polar functional groups (e.g. hydroxyl,
carboxyl, amino and nitro). Thus the solubility of chlorogenic acid molecules is expected to be low,
particularly as the molecular weight increases (Clifford, 1985; Brunner, 1994; Taylor, 1996). Small additions of polar co-solvents are usually employed to increase the solubility of polar and high
molecular weight substances, despite a possible decrease in selectivity (Brunner, 1994). Two major
effects are associated with the addition of a cosolvent: I)- its contribution to the enhancement of
physical interactions between solute and solvent molecules which, depending on the nature of the
solute, can lead to chemical interactions such as hydrogen bonding, and a consequent increase of the
overall solubility (Ting et al., 1993; Brunner, 1994), and II)- the higher criticaltemperature of the mixed solvent when compared to pure solvent (Kim and Johnston, 1987; Brunner, 1994). In the vicinity of the
critical point the isothermal compressibility assumes high values, which leads to the clustering of solvent molecules around the solute molecule and thereby enhancing the solubility (Debenedetti et al., 1989; Brunner, 1994). A good example of the co-solvent effect can be seen in effective extraction of caffeine from coffee beans using moistened green coffee beans and water saturated supercritical CO2as a solvent (Peker et al., 1992; Lack and Seidlitz, 1993). However, depending on the compound to be extracted the presence of moisture can have negative influence on the extraction process. Snyder et al. (1984) investigated the effect of moisture content on the extraction of soy oil from seeds using
supercritical CO2. The authors reported lower extraction rates for moisture contents higher than 12
wt%. Eggers (1996) also reported a similar result. Several studies on the extraction of lipids from
oleaginous seeds and alkaloids from natural products with supercritical CO2and supercritical CO2
modified with aliphatic alcohols as co-solvents can be found in the literature. Azevedo and Mohamed
(2001) reported that the addition of ethanol to supercritical CO2decreased the extraction time and
the amount of solvent necessary for the extraction of lipids from cupuaçu. Saldaña et al. (2002a,b) used
supercritical CO2and ethanol as a co-solvent in the extraction of methylxantines from guaraná seeds,
mate leaves and cocoa beans. The main objective of this work is to explore and compare the capacity and selectivity of CO2and CO2 modified with ethanol or with isopropyl alcohol (both acceptable solvents for cosmetics, pharmaceuticals and food processing) in the extraction of caffeine, chlorogenic acids and coffee oil from green coffee beans.
0/5000
Dari: -
Ke: -
Hasil (Bahasa Indonesia) 1: [Salinan]
Disalin!
Abstract –The paper reports on experimental data on the extraction of caffeine, coffee oil and chlorogenic acids from green coffee beans using pure supercritical CO2and supercritical CO2modified with ethanol (5% w/w) and isopropyl alcohol (5% w/w) at 50 and 60ºC and 15.2 24.8 e 35.2 MPa. In this study extraction kinetics were obtained for all assays i.e. samples were collected at several time intervals for each solvent and mixed solvent. When pure CO2and CO2-ethanol mixed solvent were used, an increase in pressure resulted in an increase in the amount of oil extracted. When CO2was modified with isopropyl alcohol, the amount of coffee oil extracted also increased with pressure. Caffeine extraction initially increased and subsequently decreased with pressure. Chlorogenic acids were only extracted when isopropyl alcohol was used as a cosolvent. An increase in extraction temperature resulted in a decrease of caffeine and oil extraction (retrograde condensation) when only CO2was used as solvent. With the use of co-solvent this retrograde behavior was no longer observed and the increase in temperature resulted in the increase in the extracted amounts of caffeine, coffee oil and chlorogenic acids. INTRODUCTION Active principles obtained from natural products are widely used by the pharmaceutical, cosmetic and food industries as raw materials for a large number of industrialized products (Cordel, 2000). Coffee beans are an important source of some active principles. Caffeine, the most widely consumed alkaloid in the world, is found in coffee beans (approximately 1-2 wt.%), together with others valuable active principles in still higher concentration than caffeine. These active components include coffee oil, which is of special interest to the cosmetic and pharmaceutical industries, and chlorogenic acids to which several therapeutic properties have been attributed and are typically found in concentrations of 7-13 wt.% and 6-9 wt.%, respectively (Folstar, 1985, Clifford, 1985; Mazzafera et al. 1998; Lima et al., 2000)
Alkaloids, vegetable oils and chlorogenic acids are commonly extracted by conventional methods
using organic solvents (chloroform, dichloromethane, etc), which are dangerous to handle and harmful to human health and environment (Mohamed, 1997), and under severe process conditions which could result in product thermal degradation (particularly when steam distillation is involved). Despite the high extraction yield of these conventional processes, the selectivity is often low and the purification of the extracted products is very costly (Reverchon et al., 2000). Supercritical CO2extraction is among the new emerging clean and environmental friendly technologies for the processing of food and pharmaceutical products (Subramanian et al., 1997; Perrut, 2000). Alkaloids (Santana et al., 2006) and
phenolics (Okuno et al., 2002) have been extracted from plants using supercritical CO2. However, this
technique strongly depends on the solubility of lowvolatile substances in supercritical fluids, usually
CO2, a non-polar solvent, with low affinity for polar substances. So, the solubility of substances in supercritical CO2decreases with the increase in the number of polar functional groups (e.g. hydroxyl,
carboxyl, amino and nitro). Thus the solubility of chlorogenic acid molecules is expected to be low,
particularly as the molecular weight increases (Clifford, 1985; Brunner, 1994; Taylor, 1996). Small additions of polar co-solvents are usually employed to increase the solubility of polar and high
molecular weight substances, despite a possible decrease in selectivity (Brunner, 1994). Two major
effects are associated with the addition of a cosolvent: I)- its contribution to the enhancement of
physical interactions between solute and solvent molecules which, depending on the nature of the
solute, can lead to chemical interactions such as hydrogen bonding, and a consequent increase of the
overall solubility (Ting et al., 1993; Brunner, 1994), and II)- the higher criticaltemperature of the mixed solvent when compared to pure solvent (Kim and Johnston, 1987; Brunner, 1994). In the vicinity of the
critical point the isothermal compressibility assumes high values, which leads to the clustering of solvent molecules around the solute molecule and thereby enhancing the solubility (Debenedetti et al., 1989; Brunner, 1994). A good example of the co-solvent effect can be seen in effective extraction of caffeine from coffee beans using moistened green coffee beans and water saturated supercritical CO2as a solvent (Peker et al., 1992; Lack and Seidlitz, 1993). However, depending on the compound to be extracted the presence of moisture can have negative influence on the extraction process. Snyder et al. (1984) investigated the effect of moisture content on the extraction of soy oil from seeds using
supercritical CO2. The authors reported lower extraction rates for moisture contents higher than 12
wt%. Eggers (1996) also reported a similar result. Several studies on the extraction of lipids from
oleaginous seeds and alkaloids from natural products with supercritical CO2and supercritical CO2
modified with aliphatic alcohols as co-solvents can be found in the literature. Azevedo and Mohamed
(2001) reported that the addition of ethanol to supercritical CO2decreased the extraction time and
the amount of solvent necessary for the extraction of lipids from cupuaçu. Saldaña et al. (2002a,b) used
supercritical CO2and ethanol as a co-solvent in the extraction of methylxantines from guaraná seeds,
mate leaves and cocoa beans. The main objective of this work is to explore and compare the capacity and selectivity of CO2and CO2 modified with ethanol or with isopropyl alcohol (both acceptable solvents for cosmetics, pharmaceuticals and food processing) in the extraction of caffeine, chlorogenic acids and coffee oil from green coffee beans.
Sedang diterjemahkan, harap tunggu..
Hasil (Bahasa Indonesia) 2:[Salinan]
Disalin!
Abstrak - Laporan kertas pada data eksperimen pada ekstraksi kafein, minyak kopi dan asam chlorogenic dari biji kopi hijau menggunakan murni CO2and superkritis superkritis CO2modified dengan etanol (5% b / b) dan isopropil alkohol (5% b / b) pada 50 dan 60ºC dan 15,2 24,8 35,2 e MPa. Dalam penelitian ini kinetika ekstraksi diperoleh untuk semua tes yaitu sampel dikumpulkan di beberapa interval waktu untuk setiap pelarut pelarut dan campuran. Ketika CO2and CO2-pelarut etanol campuran murni digunakan, peningkatan tekanan menyebabkan peningkatan jumlah minyak yang diekstraksi. Ketika CO2was dimodifikasi dengan isopropil alkohol, jumlah minyak kopi diekstraksi juga meningkat dengan tekanan. Ekstraksi kafein awalnya meningkat dan kemudian menurun dengan tekanan. Asam chlorogenic hanya diambil ketika isopropil alkohol digunakan sebagai cosolvent a. Peningkatan suhu ekstraksi mengakibatkan penurunan kafein dan ekstraksi minyak (kondensasi retrograde) ketika hanya CO2was digunakan sebagai pelarut. Dengan menggunakan co-pelarut perilaku retrograde ini tidak lagi diamati dan peningkatan suhu mengakibatkan peningkatan jumlah diekstrak dari kafein, minyak kopi dan asam chlorogenic. PENDAHULUAN prinsip aktif yang diperoleh dari produk alami yang banyak digunakan oleh industri farmasi, kosmetik dan industri makanan sebagai bahan baku untuk sejumlah besar produk industri (Cordel, 2000). Kopi biji merupakan sumber penting dari beberapa prinsip aktif. Kafein, alkaloid yang paling banyak dikonsumsi di dunia, ditemukan dalam biji kopi (sekitar 1-2 wt.%), Bersama-sama dengan orang lain prinsip aktif yang berharga dalam konsentrasi masih lebih tinggi dari kafein. Komponen aktif meliputi minyak kopi, yang merupakan kepentingan khusus untuk industri kosmetik dan farmasi, dan asam chlorogenic yang beberapa sifat terapeutik telah dikaitkan dan biasanya ditemukan dalam konsentrasi 7-13 wt.% Dan 6-9 wt.% , masing-masing (Folstar, 1985, Clifford, 1985; Mazzafera et al 1998;.. Lima et al, 2000) Alkaloid, minyak nabati dan asam chlorogenic biasanya diekstrak dengan metode konvensional menggunakan pelarut organik (kloroform, diklorometana, dll), yang berbahaya untuk menangani dan berbahaya bagi kesehatan manusia dan lingkungan (Mohamed, 1997), dan di bawah kondisi proses parah yang bisa mengakibatkan degradasi termal produk (terutama ketika distilasi uap yang terlibat). Meskipun hasil ekstraksi yang tinggi ini proses konvensional, selektivitas sering rendah dan pemurnian produk diekstrak sangat mahal (Reverchon et al., 2000). CO2extraction superkritis adalah salah satu teknologi baru yang muncul bersih dan ramah lingkungan untuk pengolahan produk makanan dan farmasi (Subramanian et al, 1997;. Perrut, 2000). Alkaloid (Santana et al., 2006) dan fenolat (Okuno et al., 2002) telah diekstrak dari tanaman menggunakan CO2 superkritis. Namun, ini teknik sangat tergantung pada kelarutan zat lowvolatile dalam cairan superkritis, biasanya CO2, pelarut non-polar, dengan afinitas rendah untuk substansi polar. Jadi, kelarutan zat dalam CO2decreases superkritis dengan peningkatan jumlah kelompok fungsional polar (misalnya hidroksil, karboksil, amino dan nitro). Jadi kelarutan molekul asam klorogenat diharapkan menjadi rendah, terutama dengan meningkatnya berat molekul (Clifford, 1985; Brunner, 1994; Taylor, 1996). Penambahan kecil polar co-pelarut biasanya digunakan untuk meningkatkan kelarutan polar dan tinggi zat berat molekul, meskipun kemungkinan penurunan selektivitas (Brunner, 1994). Dua besar efek yang terkait dengan penambahan cosolvent a: I) - kontribusinya terhadap peningkatan interaksi fisik antara zat terlarut dan molekul pelarut yang, tergantung pada sifat zat terlarut, dapat menyebabkan interaksi kimia seperti ikatan hidrogen, dan akibat peningkatan dari kelarutan keseluruhan (Ting et al, 1993; Brunner, 1994)., dan II) - yang criticaltemperature tinggi dari pelarut campuran bila dibandingkan dengan pelarut murni (Kim dan Johnston, 1987; Brunner, 1994). Di sekitar dari titik kritis kompresibilitas isotermal mengasumsikan nilai-nilai yang tinggi, yang mengarah ke pengelompokan molekul pelarut sekitar molekul zat terlarut dan dengan demikian meningkatkan kelarutan (Debenedetti et al, 1989;. Brunner, 1994). Sebuah contoh yang baik dari efek co-pelarut dapat dilihat pada ekstraksi yang efektif kafein dari biji kopi menggunakan biji kopi hijau dibasahi dan air jenuh CO2as superkritis pelarut (Peker et al, 1992;. Kurangnya dan Seidlitz, 1993). Namun, tergantung pada senyawa yang akan diekstraksi keberadaan uap air dapat memiliki pengaruh negatif pada proses ekstraksi. Snyder et al. (1984) meneliti pengaruh kadar air pada ekstraksi minyak kedelai dari biji menggunakan CO2 superkritis. Para penulis melaporkan tingkat ekstraksi yang lebih rendah untuk kadar air lebih tinggi dari 12 % berat. Eggers (1996) juga melaporkan hasil yang serupa. Beberapa penelitian tentang ekstraksi lipid dari biji berminyak dan alkaloid dari produk alami dengan CO2and superkritis CO2 superkritis dimodifikasi dengan alkohol alifatik sebagai co-pelarut dapat ditemukan dalam literatur. Azevedo dan Mohamed (2001) melaporkan bahwa penambahan etanol untuk superkritis CO2decreased waktu ekstraksi dan jumlah pelarut yang diperlukan untuk ekstraksi lipid dari cupuaçu. Saldaña et al. (2002a, b) menggunakan etanol CO2and superkritis sebagai co-pelarut dalam ekstraksi methylxantines dari biji guarana, pasangan daun dan biji kakao. Tujuan utama dari penelitian ini adalah untuk mengeksplorasi dan membandingkan kapasitas dan selektivitas CO2and CO2 dimodifikasi dengan etanol atau dengan isopropil alkohol (kedua pelarut yang dapat diterima untuk kosmetik, farmasi dan pengolahan makanan) dalam ekstraksi kafein, asam chlorogenic dan minyak kopi dari hijau biji kopi.





























Sedang diterjemahkan, harap tunggu..
 
Bahasa lainnya
Dukungan alat penerjemahan: Afrikans, Albania, Amhara, Arab, Armenia, Azerbaijan, Bahasa Indonesia, Basque, Belanda, Belarussia, Bengali, Bosnia, Bulgaria, Burma, Cebuano, Ceko, Chichewa, China, Cina Tradisional, Denmark, Deteksi bahasa, Esperanto, Estonia, Farsi, Finlandia, Frisia, Gaelig, Gaelik Skotlandia, Galisia, Georgia, Gujarati, Hausa, Hawaii, Hindi, Hmong, Ibrani, Igbo, Inggris, Islan, Italia, Jawa, Jepang, Jerman, Kannada, Katala, Kazak, Khmer, Kinyarwanda, Kirghiz, Klingon, Korea, Korsika, Kreol Haiti, Kroat, Kurdi, Laos, Latin, Latvia, Lituania, Luksemburg, Magyar, Makedonia, Malagasi, Malayalam, Malta, Maori, Marathi, Melayu, Mongol, Nepal, Norsk, Odia (Oriya), Pashto, Polandia, Portugis, Prancis, Punjabi, Rumania, Rusia, Samoa, Serb, Sesotho, Shona, Sindhi, Sinhala, Slovakia, Slovenia, Somali, Spanyol, Sunda, Swahili, Swensk, Tagalog, Tajik, Tamil, Tatar, Telugu, Thai, Turki, Turkmen, Ukraina, Urdu, Uyghur, Uzbek, Vietnam, Wales, Xhosa, Yiddi, Yoruba, Yunani, Zulu, Bahasa terjemahan.

Copyright ©2024 I Love Translation. All reserved.

E-mail: