The attribute-oriented generalization method compresses the data set b terjemahan - The attribute-oriented generalization method compresses the data set b Bahasa Indonesia Bagaimana mengatakan

The attribute-oriented generalizati

The attribute-oriented generalization method compresses the data set by replacing the attribute values with more general information in a form of a concept hierarchy. This procedure assumes that each attribute can be generalized independently of others thus, allowing large data sets to be efficiently generalized (Carter and Hamilton, 1998).
A tree structure is used in this method, with the most general concept is placed at the root of the tree while its particulars constitute the leaves (See Fig.2). For example in the Strokes data set, the attribute “Diag” represents the patient diagnostic codes and the attribute “Age” represents the age of patients. In the case of continuous attributes the leaves or nodes in concept hierarchies are represented as a range of values, as shown in Fig.2. The purpose of providing a set of concept hierarchies is to summarize the training data set
0/5000
Dari: -
Ke: -
Hasil (Bahasa Indonesia) 1: [Salinan]
Disalin!
The attribute-oriented generalization method compresses the data set by replacing the attribute values with more general information in a form of a concept hierarchy. This procedure assumes that each attribute can be generalized independently of others thus, allowing large data sets to be efficiently generalized (Carter and Hamilton, 1998).A tree structure is used in this method, with the most general concept is placed at the root of the tree while its particulars constitute the leaves (See Fig.2). For example in the Strokes data set, the attribute “Diag” represents the patient diagnostic codes and the attribute “Age” represents the age of patients. In the case of continuous attributes the leaves or nodes in concept hierarchies are represented as a range of values, as shown in Fig.2. The purpose of providing a set of concept hierarchies is to summarize the training data set
Sedang diterjemahkan, harap tunggu..
Hasil (Bahasa Indonesia) 2:[Salinan]
Disalin!
Metode generalisasi atribut berorientasi kompres data diatur dengan mengganti nilai atribut dengan informasi yang lebih umum dalam bentuk hirarki konsep. Prosedur ini mengasumsikan bahwa setiap atribut dapat digeneralisasi secara independen dari orang lain sehingga, memungkinkan data yang besar set untuk secara efisien umum (Carter dan Hamilton, 1998).
Struktur pohon digunakan dalam metode ini, dengan konsep yang paling umum ditempatkan pada akar pohon sementara khusus yang merupakan daun (Lihat Gambar 2). Misalnya dalam kumpulan data Strokes, atribut "Diag" merupakan kode diagnostik pasien dan atribut "Umur" merupakan usia pasien. Dalam kasus atribut kontinyu daun atau node dalam hirarki konsep direpresentasikan sebagai rentang nilai, seperti yang ditunjukkan pada Gambar 2. Tujuan memberikan satu set hierarki konsep adalah untuk merangkum kumpulan data pelatihan
Sedang diterjemahkan, harap tunggu..
 
Bahasa lainnya
Dukungan alat penerjemahan: Afrikans, Albania, Amhara, Arab, Armenia, Azerbaijan, Bahasa Indonesia, Basque, Belanda, Belarussia, Bengali, Bosnia, Bulgaria, Burma, Cebuano, Ceko, Chichewa, China, Cina Tradisional, Denmark, Deteksi bahasa, Esperanto, Estonia, Farsi, Finlandia, Frisia, Gaelig, Gaelik Skotlandia, Galisia, Georgia, Gujarati, Hausa, Hawaii, Hindi, Hmong, Ibrani, Igbo, Inggris, Islan, Italia, Jawa, Jepang, Jerman, Kannada, Katala, Kazak, Khmer, Kinyarwanda, Kirghiz, Klingon, Korea, Korsika, Kreol Haiti, Kroat, Kurdi, Laos, Latin, Latvia, Lituania, Luksemburg, Magyar, Makedonia, Malagasi, Malayalam, Malta, Maori, Marathi, Melayu, Mongol, Nepal, Norsk, Odia (Oriya), Pashto, Polandia, Portugis, Prancis, Punjabi, Rumania, Rusia, Samoa, Serb, Sesotho, Shona, Sindhi, Sinhala, Slovakia, Slovenia, Somali, Spanyol, Sunda, Swahili, Swensk, Tagalog, Tajik, Tamil, Tatar, Telugu, Thai, Turki, Turkmen, Ukraina, Urdu, Uyghur, Uzbek, Vietnam, Wales, Xhosa, Yiddi, Yoruba, Yunani, Zulu, Bahasa terjemahan.

Copyright ©2025 I Love Translation. All reserved.

E-mail: