Hasil (
Bahasa Indonesia) 1:
[Salinan]Disalin!
Pemecahan masalah Istilah masalah dan memecahkan masalah terjadi banyak disiplin tetapi mungkin lebih berhubungan erat dengan matematika daripada yang lain. Selama bertahun-tahun banyak yang telah ditulis tentang masalah dan pemecahan sehingga menimbulkan berbagai sekolah pemikiran.Pendidikan matematika, pemecahan masalah telah ditekankan sejak Polya's bekerja di tahun 1940-an. POLYA, yang sering dianggap sebagai ayah dari pemecahan masalah, menggambarkannya sebagai berikutMemecahkan masalah adalah menemukan cara tidak diketahui untuk akhir yang jelas dipahami untuk menemukan cara dimana ada cara dikenal off-tangan. Sebuah pertanyaan menjadi masalah, itu harus hadir tantangan yang tidak dapat diselesaikan oleh beberapa prosedur rutin. Pemecahan masalah adalah proses menerima tantangan dan berjuang untuk mengatasinya.POLYA percaya bahwa untuk memecahkan masalah mahasiswa harus pertama datang untuk berdamai dengan apa masalahnya adalah benar-benar tentang. Sekali ia telah memperoleh wawasan tentang masalah hanya kemudian dapat menyusun rencana untuk memecahkannya. Kapan rencana telah dilakukan Polya menekankan perlu untuk melihat kembali atas masalah dalam hal solusi. Nya empat langkah pemecahan masalah yang model, yang telah digunakan sebagai dasar untuk banyak kerangka kerja berikutnya, dapat diringkas sebagai:1 memahami masalah2 merancang sebuah rencana3 melaksanakan rencana4 Lihat bockSchoenfeld (1989) dibahas pemecahan masalah dalam hal 'tugas untuk diselesaikan'. Dia percaya bahwa untuk masalah memecahkan terjadi seorang mahasiswa pertama harus termotivasi untuk memecahkan masalah dan tidak ada cara yang jelas untuk melakukannya. Dia menyatakan bahwa, untuk setiap siswa, masalah matematika adalah tugas:♦ yang siswa tertarik dan bergerak dan untuk yang ingin mendapatkan resolusi; dan♦ yang siswa tidak memiliki mudah diakses sarana matematika yang digunakan untuk mencapai resolusi.Siemon dan Booker (1990) memiliki pandangan yang sama masalah memecahkan, menyoroti kebutuhan bagi siswa untuk ingin atau perlu memecahkan masalah secara individual maupun kelompok, dan memiliki tidak berarti segera untuk melakukannya. Mereka melanjutkan untuk menjelaskan pemecahan masalah sebagai proses mencapai solusi untuk masalah, sering dengan diidentifikasi fase awal, pertengahan dan akhir. Mereka menyatakan bahwa masalah adalah tugas atau situasi:♦ yang Anda ingin atau perlu memecahkan;♦ yang Anda percaya Anda memiliki beberapa kesempatan yang wajar untuk menyelesaikan, baik secara perorangan maupun kelompok; Tapi♦ yang Anda atau kelompok tidak memiliki solusi yang segera tersedia strategi.Pandangan ini pada pemecahan masalah menyoroti bahwa masalah adalah tugas yang ada yang tidak ada solusi langsung atau jelas dan pemecahan masalah proses siswa melakukan ketika terlibat dengan tugas ini. Pemecahan masalah melibatkan terlibat dalam tugas-tugas yang strategi solusi ini tidak segera jelas. Untuk menemukan solusi yang mungkin siswa perlu menarik pada pengetahuan dan proses dan akan sering mengembangkan pengetahuan baru dan pemahaman mereka kemajuan menuju solusi.Isu utama dalam pemecahan masalah ini ide tidak ada solusi yang segera tersedia atau jelas. Tugas yang merupakan masalah bagi siswa tahun 1 tidak akan menjadi masalah bagi pelajar Year 7. Memang tugas yang akan menjadi masalah untuk beberapa siswa di tingkat tahun tertentu tidak akan menjadi masalah bagi semua siswa di tingkat tahun itu.Tugas ini tidak akan menjadi masalah bagi pelajar Year 7 seperti kebanyakan siswa akan mampu memikirkan solusi segera. Matematika pengetahuan dan pemahaman tentang konsep perkalian dan fakta-fakta dasar perkalian akan memimpin mereka segera untuk berpikir tentang 3 balita dan datang dengan solusi 15 anak anjing. Tugas ini karena itu tidak dapat dipertimbangkan masalah untuk para mahasiswa.However, for students in Year 1 who would in most cases not have this mathematical knowledge and understanding, it could well be conceived as a problem for which there is no immediate or obvious solution. In most situations a Year 1 student would need to think about how to solve this problem and would perhaps come up with the possibility of using materials and counting or drawing a diagram and counting.When selecting problems for a class program it is important to keep in mind the concept of problem solving as a task or situation for which there is no immediate or obvious solution. At times in a classroom students may be 'problem solving' when in fact they are reading 'problems' and immediately knowing what to do to solve this 'problem'. In these situations the activity being undertaken by the students could not in fact be considered to be problem solving.Strategies and problem solvingIn 1965 Polya observed that students needed techniques to help them plan for solutions. This observation provided the catalyst for over two decades of research into the identification and utilization of problem solving strategies. The outcome of this research ultimately led to strategy driven problem solving programs in schools. These programs centered around the teaching of particular strategies such as make a list, work backwards, guess and check, where the strategy rather than the problem was the focus. A strategy was introduced and then the class would solve a variety of problems using the identified strategy.For example, the strategy of 'make a list' would be taught and then the class would spend time solving problems by making a list. Students did not need to understand or come to terms with problems as they knew immediately each one could be solved using the particular. This method of teaching problem solving continued for some time until researchers began to notice that students didn't necessarily become more proficient at problem solving in situations outside of the specific lessons. This thinking was not generalised into different situations where the students had to identify the appropriate strategy for themselves.Research began to focus on problem solving and cognition and the methodology of problem solving. This emphasis led to changes in the nature of the mathematics curriculum itself and strengthened the importance of problem solving in school mathematics. Throughout the 1970s the mathematics community expressed the need for clearer guidelines and a more concise sense of direction. The National Council of Teachers of Mathematics (NCTM, 1980a) responded to these concerns with a document titled Agenda for Action: Recommendations for School Mathematics of the 1980s, which outlined eight explicit recommendations, the first of which was that problem solving should be the focus of school mathematics.By 1989 the NCTM had taken its earlier recommendation even further and was now stating that problem solving must be integral to all mathematical activities. Problem solving was to be viewed not as a separate topic but as a process that should permeate the entire mathematics program from beginning to end. Viewing problem solving in this way would provide the context in which concepts and processes could be learned. This approach enables mathematical constructs to be grounded in and emerge from students' own solutions to problems that are, to them, real and genuine. Hence, as problem solving as such is an individualized Endeavour, mathematics becomes both functional and meaningful to each individual.Similar calls were made in Australia. State and territory education departments began to interpret problem solving as a process, placing importance on the procedures and strategies used by the students rather than their answers. Problem solving was often viewed as the central focus of the curriculum and integrated across all mathematical areas.In 1991 the Australian Education Council published A National Statement on Mathematics for Australian Schools. The purpose of this statement was to provide a framework around which states and territories and thus schools could build their mathematics curriculum. It identifies important components of mathematics education and stales that experiences with problems should he provided to enable students to use a wide range of problem solving strategies across all topics in mathematics. This document is still the central framework for the various syllabuses that have evolved.Today many educators believe that the most important goal of the study of mathematics is fostering and developing students' abilities to solve problems. Yet, as mentioned, adherence to traditional styles of teaching leads to difficulties with problem solving. For problem solving to be worthwhile it is essential that teachers view it as a valuable, motivating and pedagogically sound approach for introducing, developing and applying concepts and processes.Small-group instruction, team teaching, learning centers and technology such as computers and calculators have become more common in classrooms. 1 however, this style of teaching is often only conducted after the 'real work' is completed—after the content involving rules and procedures has been taught. It is usually not used as a means of teaching a concept but rather as consolidation or reinforcement. Activities where students arc seen to be talking, interacting and even enjoying themselves are not always accepted as pedagogically sound. Yet, this is often how students learn best—in environments where they can engage in activities that allow exploration, language and socialization from which they can make sense of complex ideas.Worthwhile problems and building new knowledge
For students to really develop mathematical ways of thinking and number sense it is essential
for good worthwhile problems to be selected for the class program. A teacher needs not only
to select problems for which there are no immediate or obvious solutions but also to select
problems which will consolidate, extend and stimulate mathematical knowledge and
understandings.
When choosing problems for a particular mathematics classroom a teacher needs to thoroughly explore the problem and the possible mathematical ideas which can be brought by the students when working through
Sedang diterjemahkan, harap tunggu..
