E. Techniques for StUdying Crystal PropertiesVarious techniques are av terjemahan - E. Techniques for StUdying Crystal PropertiesVarious techniques are av Bahasa Indonesia Bagaimana mengatakan

E. Techniques for StUdying Crystal

E. Techniques for StUdying Crystal Properties
Various techniques are available for the investigation of the solid state. These include microscopy (including hot-stage microscopy), infrared spectrophotometry, single-crystal X-ray and X-ray powder diffraction, thermal
analysis. and dilatometry. Single-crystal X-ray provides the most complete information about the solid state. It is, however, tedious, time consuming, and, hence, unsuitable for routine use.

Powder X-ray diffraction is both rapid and relatively simple, and is the method of choice. The powder X-ray diffraction pattern is unique to each polymorphic form: amorphous materials do not show any patterns or show
one or two broad peaks attributable to the presence of shortrange ordering. Powder X-ray diffraction does not always indicate if the crystalline material is a true polymorph or a solvate. In Figure 16 are shown typical powder X-ray diffraction patterns for anhydrous amorphous, anhydrous crystalline, and crystalline trihydrate forms of the antibiotic epicillin [81,82].

Differential thermal analysis and differential scanning calorimetry are particularly useful in the investigation of polymorphism and in obtaining pertinent thermodynamic data. Figure 17 shows differential thermal analysis
patterns for two polymer-phs and a dioxane solvate form of SQ 10,996 [83]. Curve (1) is the differential thermogram ~Jr form A of SQ 10,996. It shows a melting endotherm at approximately 195°C, followed by a decomposition endotherm at 250 to 300°C. Curve (2) represents the differential thermogram for form B. It shows a melting endotherm at 180°C, followed by a small exotherm characterizing transition to form A, which then melts and decomposes at 190°C and 250 to 300°C, respectively. Curve (3) is a thermogram for the dioxane solvate. It is similar to that of form B with the exception that it has an extra endotherm at 140°C. This is a de solvation endotherm; upon desolvation, form B is generated. Other events on the thermogram of the solvate are identical to those seen for form B.

Desolvation endotherms are not always as distinct as shown in this example. In these situations thermogravimetric analysis is very useful. The thermogravimetric analysis pattern for the dioxane solvate showed a loss in weight that began at 105°C and was complete at about 140°C. The loss represented 13% of the total weight, which corresponded to a 1: 1 solvate.

Presence of a solvate is best visualized by heating a sample of the suspected solvate immersed in a high-boiling liquid in which it is soluble. In this technique, desolvation is indicated by the appearance of bubbles. A hot­
stage microscope is very useful in the visualization. Another approach to determine whether an observed endotherm is due to desolvation is suggested in the work of Serajuddin [79]. His data for theophylline monohydrate are presented in Figure 18. It can be seen here that the desolvation endotherm shifted depending on manner of exposure of the sample. This difference in the observed dehydration temperature was explained on the basis of the partial pressure of water vapor prevalent over the sample under the different experimental conditions. On the other hand, the position of melting endotherm is independent of the manner of sample presentation


0/5000
Dari: -
Ke: -
Hasil (Bahasa Indonesia) 1: [Salinan]
Disalin!
E. Techniques for StUdying Crystal Properties
Various techniques are available for the investigation of the solid state. These include microscopy (including hot-stage microscopy), infrared spectrophotometry, single-crystal X-ray and X-ray powder diffraction, thermal
analysis. and dilatometry. Single-crystal X-ray provides the most complete information about the solid state. It is, however, tedious, time consuming, and, hence, unsuitable for routine use.

Powder X-ray diffraction is both rapid and relatively simple, and is the method of choice. The powder X-ray diffraction pattern is unique to each polymorphic form: amorphous materials do not show any patterns or show
one or two broad peaks attributable to the presence of shortrange ordering. Powder X-ray diffraction does not always indicate if the crystalline material is a true polymorph or a solvate. In Figure 16 are shown typical powder X-ray diffraction patterns for anhydrous amorphous, anhydrous crystalline, and crystalline trihydrate forms of the antibiotic epicillin [81,82].

Differential thermal analysis and differential scanning calorimetry are particularly useful in the investigation of polymorphism and in obtaining pertinent thermodynamic data. Figure 17 shows differential thermal analysis
patterns for two polymer-phs and a dioxane solvate form of SQ 10,996 [83]. Curve (1) is the differential thermogram ~Jr form A of SQ 10,996. It shows a melting endotherm at approximately 195°C, followed by a decomposition endotherm at 250 to 300°C. Curve (2) represents the differential thermogram for form B. It shows a melting endotherm at 180°C, followed by a small exotherm characterizing transition to form A, which then melts and decomposes at 190°C and 250 to 300°C, respectively. Curve (3) is a thermogram for the dioxane solvate. It is similar to that of form B with the exception that it has an extra endotherm at 140°C. This is a de solvation endotherm; upon desolvation, form B is generated. Other events on the thermogram of the solvate are identical to those seen for form B.

Desolvation endotherms are not always as distinct as shown in this example. In these situations thermogravimetric analysis is very useful. The thermogravimetric analysis pattern for the dioxane solvate showed a loss in weight that began at 105°C and was complete at about 140°C. The loss represented 13% of the total weight, which corresponded to a 1: 1 solvate.

Presence of a solvate is best visualized by heating a sample of the suspected solvate immersed in a high-boiling liquid in which it is soluble. In this technique, desolvation is indicated by the appearance of bubbles. A hot­
stage microscope is very useful in the visualization. Another approach to determine whether an observed endotherm is due to desolvation is suggested in the work of Serajuddin [79]. His data for theophylline monohydrate are presented in Figure 18. It can be seen here that the desolvation endotherm shifted depending on manner of exposure of the sample. This difference in the observed dehydration temperature was explained on the basis of the partial pressure of water vapor prevalent over the sample under the different experimental conditions. On the other hand, the position of melting endotherm is independent of the manner of sample presentation


Sedang diterjemahkan, harap tunggu..
Hasil (Bahasa Indonesia) 2:[Salinan]
Disalin!
E. Teknik untuk mempelajari kristal Properti
Berbagai teknik yang tersedia untuk meneliti keadaan padat. Ini termasuk mikroskop (termasuk hot-tahap mikroskop), spektrofotometri inframerah, kristal tunggal sinar-X dan X-ray difraksi serbuk, termal
analisis. dan dilatometry. Kristal tunggal sinar-X memberikan informasi yang paling lengkap tentang keadaan padat. Hal ini, bagaimanapun, memakan membosankan, waktu, dan, karenanya, tidak cocok untuk penggunaan rutin. difraksi Powder X-ray adalah baik cepat dan relatif sederhana, dan merupakan metode pilihan. Pola difraksi sinar-X serbuk unik untuk setiap form polimorfik: bahan amorf tidak menunjukkan pola atau menunjukkan satu atau dua puncak yang luas disebabkan adanya shortrange pemesanan. Serbuk difraksi sinar-X tidak selalu menunjukkan jika bahan kristal adalah polimorf benar atau solvat a. Pada Gambar 16 diperlihatkan pola difraksi sinar-X serbuk khas untuk anhidrat amorf, kristal anhidrat, dan bentuk trihidrat kristal dari epicillin antibiotik [81,82]. analisis termal diferensial dan diferensial kalorimetri pemindaian sangat berguna dalam penyelidikan polimorfisme dan memperoleh data termodinamika yang bersangkutan. Gambar 17 menunjukkan analisis termal diferensial pola dua polimer-PHS dan bentuk solvat dioksan SQ 10996 [83]. Kurva (1) adalah termogram diferensial ~ Jr bentuk A SQ 10.996. Ini menunjukkan endoterm leleh sekitar 195 ° C, diikuti dengan endoterm dekomposisi pada 250 sampai 300 ° C. Kurva (2) merupakan termogram diferensial untuk formulir B. Ini menunjukkan endoterm leleh pada 180 ° C, diikuti oleh eksoterm kecil mencirikan transisi untuk membentuk A, yang kemudian meleleh dan terurai pada 190 ° C dan 250 sampai 300 ° C, masing-masing . Kurva (3) adalah termogram untuk solvat dioksan. Hal ini mirip dengan bentuk B dengan pengecualian bahwa ia memiliki endoterm tambahan pada 140 ° C. Ini adalah endoterm de solvasi; setelah desolvation, bentuk B yang dihasilkan. Acara lainnya pada termogram dari solvat adalah identik dengan yang terlihat untuk bentuk B. desolvation endotermik tidak selalu sebagai berbeda seperti yang ditunjukkan dalam contoh ini. Dalam situasi ini analisis termogravimetri sangat berguna. Pola analisis termogravimetri untuk solvat dioksan menunjukkan penurunan berat badan yang dimulai pada 105 ° C dan selesai pada sekitar 140 ° C. Kerugian mewakili 13% dari total berat badan, yang berhubungan dengan 1: 1 solvat. Kehadiran melarutkan suatu terbaik divisualisasikan dengan memanaskan sampel yang diduga melarutkan direndam dalam cairan bertitik didih tinggi di mana ia larut. Dalam teknik ini, desolvation ditunjukkan dengan munculnya gelembung. Sebuah hot mikroskop tahap sangat berguna dalam visualisasi. Pendekatan lain untuk menentukan apakah suatu endoterm diamati adalah karena desolvation disarankan dalam karya Serajuddin [79]. Data-Nya untuk teofilin monohydrate disajikan pada Gambar 18. Hal ini dapat dilihat di sini bahwa endoterm desolvation bergeser tergantung pada cara pemaparan dari sampel. Perbedaan suhu dehidrasi diamati dijelaskan atas dasar tekanan parsial uap air lazim atas sampel di bawah kondisi percobaan yang berbeda. Di sisi lain, posisi mencair endoterm tidak tergantung pada cara sampel presentasi













Sedang diterjemahkan, harap tunggu..
 
Bahasa lainnya
Dukungan alat penerjemahan: Afrikans, Albania, Amhara, Arab, Armenia, Azerbaijan, Bahasa Indonesia, Basque, Belanda, Belarussia, Bengali, Bosnia, Bulgaria, Burma, Cebuano, Ceko, Chichewa, China, Cina Tradisional, Denmark, Deteksi bahasa, Esperanto, Estonia, Farsi, Finlandia, Frisia, Gaelig, Gaelik Skotlandia, Galisia, Georgia, Gujarati, Hausa, Hawaii, Hindi, Hmong, Ibrani, Igbo, Inggris, Islan, Italia, Jawa, Jepang, Jerman, Kannada, Katala, Kazak, Khmer, Kinyarwanda, Kirghiz, Klingon, Korea, Korsika, Kreol Haiti, Kroat, Kurdi, Laos, Latin, Latvia, Lituania, Luksemburg, Magyar, Makedonia, Malagasi, Malayalam, Malta, Maori, Marathi, Melayu, Mongol, Nepal, Norsk, Odia (Oriya), Pashto, Polandia, Portugis, Prancis, Punjabi, Rumania, Rusia, Samoa, Serb, Sesotho, Shona, Sindhi, Sinhala, Slovakia, Slovenia, Somali, Spanyol, Sunda, Swahili, Swensk, Tagalog, Tajik, Tamil, Tatar, Telugu, Thai, Turki, Turkmen, Ukraina, Urdu, Uyghur, Uzbek, Vietnam, Wales, Xhosa, Yiddi, Yoruba, Yunani, Zulu, Bahasa terjemahan.

Copyright ©2025 I Love Translation. All reserved.

E-mail: