The origins of quantum mechanicsThe basic principles of classical mech terjemahan - The origins of quantum mechanicsThe basic principles of classical mech Bahasa Indonesia Bagaimana mengatakan

The origins of quantum mechanicsThe

The origins of quantum mechanics
The basic principles of classical mechanics are reviewed in Further information 7.1.
In brief, they show that classical physics (1) predicts a precise trajectory for particles, with precisely specified locations and momenta at each instant, and (2) allows the translational, rotational, and vibrational modes of motion to be excited to any energy simply by controlling the forces that are applied.
These conclusions agree with everyday experience.
Everyday experience, however, does not extend to individual atoms, and careful experiments of the type described below have shown that classical mechanics fails when applied to the transfers of very small energies and to objects of very small mass.
We shall also investigate the properties of light.
In classical physics, light is described as electromagnetic radiation, which is understood in terms of the electromagnetic field, an oscillating electric and magnetic disturbance that spreads as a harmonic wave, wave displacements that can be expressed as sine or cosine functions (see Fundamentals F.6), through empty space, the vacuum.
Such waves are generated by the acceleration of electric charge, as in the oscillating motion of electrons in the antenna of a radio transmitter.
The wave travels at a constant speed called the speed of light, c, which is about 3 × 108 m s−1. As its name suggests, an electromagnetic field has two components, an electric field that acts on charged particles (whether stationary of moving) and a magnetic field that acts only on moving charged particles.
The electromagnetic field is characterized by a wavelength, λ (lambda), the distance between the
neighbouring peaks of the wave, and its frequency, ν (nu), the number of times per second at which its displacement at a fixed point returns to its original value (Fig. 7.1).
The frequency is measured in hertz, where 1 Hz = 1 s−1. The wavelength and frequency of an electromagnetic wave are related by

1987/5000
Dari: Inggris
Ke: Bahasa Indonesia
Hasil (Bahasa Indonesia) 1: [Salinan]
Disalin!
The origins of quantum mechanicsThe basic principles of classical mechanics are reviewed in Further information 7.1. In brief, they show that classical physics (1) predicts a precise trajectory for particles, with precisely specified locations and momenta at each instant, and (2) allows the translational, rotational, and vibrational modes of motion to be excited to any energy simply by controlling the forces that are applied. These conclusions agree with everyday experience. Everyday experience, however, does not extend to individual atoms, and careful experiments of the type described below have shown that classical mechanics fails when applied to the transfers of very small energies and to objects of very small mass.We shall also investigate the properties of light. In classical physics, light is described as electromagnetic radiation, which is understood in terms of the electromagnetic field, an oscillating electric and magnetic disturbance that spreads as a harmonic wave, wave displacements that can be expressed as sine or cosine functions (see Fundamentals F.6), through empty space, the vacuum. Such waves are generated by the acceleration of electric charge, as in the oscillating motion of electrons in the antenna of a radio transmitter. The wave travels at a constant speed called the speed of light, c, which is about 3 × 108 m s−1. As its name suggests, an electromagnetic field has two components, an electric field that acts on charged particles (whether stationary of moving) and a magnetic field that acts only on moving charged particles. The electromagnetic field is characterized by a wavelength, λ (lambda), the distance between the
neighbouring peaks of the wave, and its frequency, ν (nu), the number of times per second at which its displacement at a fixed point returns to its original value (Fig. 7.1).
The frequency is measured in hertz, where 1 Hz = 1 s−1. The wavelength and frequency of an electromagnetic wave are related by

Sedang diterjemahkan, harap tunggu..
Hasil (Bahasa Indonesia) 2:[Salinan]
Disalin!
Asal-usul mekanika kuantum
Prinsip dasar dari mekanika klasik ditelaah di Informasi lebih lanjut 7.1.
Singkatnya, mereka menunjukkan bahwa fisika klasik (1) memprediksi lintasan yang tepat untuk partikel, dengan lokasi fi ed tepatnya tertentu dan momentum pada setiap instan, dan (2) memungkinkan translasi itu, rotasi, dan mode getaran gerak menjadi bersemangat untuk energi apapun hanya dengan mengendalikan kekuatan yang diterapkan.
Kesimpulan ini setuju dengan pengalaman sehari-hari.
Pengalaman sehari-hari, namun, tidak mencakup atom individu, dan percobaan-hati dari Jenis dijelaskan di bawah ini menunjukkan bahwa mekanika klasik gagal ketika diterapkan pada transfer energi yang sangat kecil dan benda-benda massa yang sangat kecil.
Kami juga akan menyelidiki sifat-sifat cahaya.
Dalam fisika klasik, cahaya digambarkan sebagai radiasi elektromagnetik, yang dipahami dalam hal elektromagnetik lapangan, sebuah gangguan listrik dan magnetik berosilasi yang menyebar sebagai gelombang harmonik, perpindahan gelombang yang dapat dinyatakan sebagai sinus atau cosinus fungsi (lihat Fundamental F.6), melalui ruang kosong, vakum.
gelombang tersebut dihasilkan oleh percepatan muatan listrik, seperti dalam gerakan osilasi elektron dalam antena pemancar radio.
Gelombang bergerak pada kecepatan konstan yang disebut kecepatan cahaya, c, yaitu sekitar 3 × 108 ms-1. Seperti namanya, sebuah lapangan elektromagnetik memiliki dua komponen, sebuah medan listrik yang bekerja pada partikel bermuatan (apakah stasioner bergerak) dan medan magnet yang hanya bekerja pada partikel bermuatan bergerak.
The elektromagnetik lapangan ditandai dengan panjang gelombang, λ (lambda ), jarak antara
puncak tetangga gelombang, dan frekuensi, ν (nu), jumlah kali per detik di mana perpindahan pada titik yang tetap kembali ke nilai aslinya (Gambar. 7.1).
Frekuensi diukur di hertz, di mana 1 Hz = 1 s-1. Panjang gelombang dan frekuensi gelombang elektromagnetik yang terkait dengan

Sedang diterjemahkan, harap tunggu..
 
Bahasa lainnya
Dukungan alat penerjemahan: Afrikans, Albania, Amhara, Arab, Armenia, Azerbaijan, Bahasa Indonesia, Basque, Belanda, Belarussia, Bengali, Bosnia, Bulgaria, Burma, Cebuano, Ceko, Chichewa, China, Cina Tradisional, Denmark, Deteksi bahasa, Esperanto, Estonia, Farsi, Finlandia, Frisia, Gaelig, Gaelik Skotlandia, Galisia, Georgia, Gujarati, Hausa, Hawaii, Hindi, Hmong, Ibrani, Igbo, Inggris, Islan, Italia, Jawa, Jepang, Jerman, Kannada, Katala, Kazak, Khmer, Kinyarwanda, Kirghiz, Klingon, Korea, Korsika, Kreol Haiti, Kroat, Kurdi, Laos, Latin, Latvia, Lituania, Luksemburg, Magyar, Makedonia, Malagasi, Malayalam, Malta, Maori, Marathi, Melayu, Mongol, Nepal, Norsk, Odia (Oriya), Pashto, Polandia, Portugis, Prancis, Punjabi, Rumania, Rusia, Samoa, Serb, Sesotho, Shona, Sindhi, Sinhala, Slovakia, Slovenia, Somali, Spanyol, Sunda, Swahili, Swensk, Tagalog, Tajik, Tamil, Tatar, Telugu, Thai, Turki, Turkmen, Ukraina, Urdu, Uyghur, Uzbek, Vietnam, Wales, Xhosa, Yiddi, Yoruba, Yunani, Zulu, Bahasa terjemahan.

Copyright ©2025 I Love Translation. All reserved.

E-mail: ilovetranslation@live.com