IV. NEW APPROACH TO THE SCALE-UP PROBLEM INTUMBLING BLENDERSHerein, we terjemahan - IV. NEW APPROACH TO THE SCALE-UP PROBLEM INTUMBLING BLENDERSHerein, we Bahasa Indonesia Bagaimana mengatakan

IV. NEW APPROACH TO THE SCALE-UP PR

IV. NEW APPROACH TO THE SCALE-UP PROBLEM IN
TUMBLING BLENDERS
Herein, we offer a first step toward the definition of rigorous scale-up rules for
tumbling blenders. We begin by proposing a set of variables that may control the
process. The driving force for flow in tumbling blenders is the acceleration from
gravity, which must be included in our analysis. Vessel size is obviously a critical
parameter, as is the rotation rate, which defines the energy input to the system.
These variables define the system parameters (i.e., the driving forces) but do not
cover the mixture response. In the case of Newtonian fluids, fluid viscosity connects
the driving force (pressure gradients, gravity, shear) to the fluid response
(velocity gradients). For granular mixtures, no similar parameter has been derived;
hence, we will define particle size and particle velocity as our “performance
variables.” Particle size plays a large role in determining mixing (or segregation)
rates because dispersion distance is expected to vary inversely with particle size.
For granular processes, individual particles drive bulk mixture behavior and we
have assumed particle velocity to be an important variable. Because all transport
and mixing phenomena are driven by the motions of individual particles, it is a priori
impossible to scale transport phenomena without first scaling the velocities of
individual particles. Although previous studies have indicated that rotation rate
(and, hence, probably particle velocities) does not affect mixing rate, these experiments
were done in very small blenders. It is conceivable that at larger scales,
these variables could become important. Given these assumptions, we can now
address the development of nondimensional scaling criteria.
0/5000
Dari: -
Ke: -
Hasil (Bahasa Indonesia) 1: [Salinan]
Disalin!
IV. NEW APPROACH TO THE SCALE-UP PROBLEM INTUMBLING BLENDERSHerein, we offer a first step toward the definition of rigorous scale-up rules fortumbling blenders. We begin by proposing a set of variables that may control theprocess. The driving force for flow in tumbling blenders is the acceleration fromgravity, which must be included in our analysis. Vessel size is obviously a criticalparameter, as is the rotation rate, which defines the energy input to the system.These variables define the system parameters (i.e., the driving forces) but do notcover the mixture response. In the case of Newtonian fluids, fluid viscosity connectsthe driving force (pressure gradients, gravity, shear) to the fluid response(velocity gradients). For granular mixtures, no similar parameter has been derived;hence, we will define particle size and particle velocity as our “performancevariables.” Particle size plays a large role in determining mixing (or segregation)rates because dispersion distance is expected to vary inversely with particle size.For granular processes, individual particles drive bulk mixture behavior and wehave assumed particle velocity to be an important variable. Because all transportand mixing phenomena are driven by the motions of individual particles, it is a prioriimpossible to scale transport phenomena without first scaling the velocities ofindividual particles. Although previous studies have indicated that rotation rate(and, hence, probably particle velocities) does not affect mixing rate, these experimentswere done in very small blenders. It is conceivable that at larger scales,these variables could become important. Given these assumptions, we can nowaddress the development of nondimensional scaling criteria.
Sedang diterjemahkan, harap tunggu..
Hasil (Bahasa Indonesia) 2:[Salinan]
Disalin!
IV. PENDEKATAN BARU ATAS SKALA-UP MASALAH DI
Tumbling blender
Disini, kami menawarkan langkah pertama menuju definisi aturan skala-up ketat untuk
jatuh blender. Kita mulai dengan mengusulkan satu set variabel yang dapat mengontrol
proses. Kekuatan pendorong untuk aliran dalam blender jatuh adalah akselerasi dari
gravitasi, yang harus dimasukkan dalam analisis kami. Ukuran Kapal jelas kritis
parameter, seperti tingkat rotasi, yang mendefinisikan masukan energi untuk sistem.
Variabel ini menentukan parameter sistem (yaitu, kekuatan pendorong) tetapi tidak
menutup respon campuran. Dalam kasus cairan Newtonian, viskositas fluida menghubungkan
penggerak (gradien tekanan, gravitasi, geser) dengan respon cairan
(kecepatan gradien). Untuk campuran granular, tidak ada parameter yang sama telah diturunkan,
maka, kita akan menentukan ukuran partikel dan kecepatan partikel sebagai kami "kinerja
Ukuran partikel memainkan peran besar dalam menentukan pencampuran (atau pemisahan) variabel. "
tarif karena jarak dispersi diharapkan bervariasi terbalik dengan ukuran partikel.
Untuk proses granular, partikel individu mendorong perilaku campuran jumlah besar dan kami
telah mengasumsikan kecepatan partikel menjadi variabel penting. Karena semua transportasi
dan pencampuran fenomena yang didorong oleh gerakan partikel individu, itu adalah apriori
tidak mungkin untuk skala fenomena transportasi tanpa terlebih dahulu skala kecepatan dari
partikel individu. Walaupun penelitian sebelumnya telah menunjukkan bahwa tingkat rotasi
(dan, karenanya, mungkin kecepatan partikel) tidak mempengaruhi pencampuran tingkat, percobaan ini
dilakukan dalam blender yang sangat kecil. Bisa dibayangkan bahwa pada skala yang lebih besar,
variabel-variabel ini bisa menjadi penting. Dengan asumsi ini, kita sekarang dapat
mengatasi pengembangan kriteria skala nondimensional.
Sedang diterjemahkan, harap tunggu..
 
Bahasa lainnya
Dukungan alat penerjemahan: Afrikans, Albania, Amhara, Arab, Armenia, Azerbaijan, Bahasa Indonesia, Basque, Belanda, Belarussia, Bengali, Bosnia, Bulgaria, Burma, Cebuano, Ceko, Chichewa, China, Cina Tradisional, Denmark, Deteksi bahasa, Esperanto, Estonia, Farsi, Finlandia, Frisia, Gaelig, Gaelik Skotlandia, Galisia, Georgia, Gujarati, Hausa, Hawaii, Hindi, Hmong, Ibrani, Igbo, Inggris, Islan, Italia, Jawa, Jepang, Jerman, Kannada, Katala, Kazak, Khmer, Kinyarwanda, Kirghiz, Klingon, Korea, Korsika, Kreol Haiti, Kroat, Kurdi, Laos, Latin, Latvia, Lituania, Luksemburg, Magyar, Makedonia, Malagasi, Malayalam, Malta, Maori, Marathi, Melayu, Mongol, Nepal, Norsk, Odia (Oriya), Pashto, Polandia, Portugis, Prancis, Punjabi, Rumania, Rusia, Samoa, Serb, Sesotho, Shona, Sindhi, Sinhala, Slovakia, Slovenia, Somali, Spanyol, Sunda, Swahili, Swensk, Tagalog, Tajik, Tamil, Tatar, Telugu, Thai, Turki, Turkmen, Ukraina, Urdu, Uyghur, Uzbek, Vietnam, Wales, Xhosa, Yiddi, Yoruba, Yunani, Zulu, Bahasa terjemahan.

Copyright ©2025 I Love Translation. All reserved.

E-mail: