Path Analysis. Path analysis is used to test the like- lihood of a cau terjemahan - Path Analysis. Path analysis is used to test the like- lihood of a cau Bahasa Indonesia Bagaimana mengatakan

Path Analysis. Path analysis is use

Path Analysis. Path analysis is used to test the like- lihood of a causal connection among three or more variables. Some of the other techniques we have described can be used to explore theories about causal- ity, but path analysis is far more powerful than the rest. Although a detailed explanation of this technique is too technical for inclusion here, the essential idea behind path analysis is to formulate a theory about the possible causes of a particular phenomenon (such as student alienation)—that is, to identify causal variables that could explain why the phenomenon occurs—and then to determine whether correlations among all the vari- ables are consistent with the theory. Suppose a researcher theorizes as follows: (1) Certain students are more alienated in school than others because they do not find school enjoyable and because they have few friends; (2) they do not find school enjoyable partly because they have few friends and partly because they do not perceive their courses as being in any way related to their needs; and (3) perceived relevance of courses is re- lated slightly to number of friends. The researcher would thenmeasureeachofthesevariables(degreeofalienation, personal relevance of courses, enjoyment in school, and numberoffriends)foranumberofstudents.Correlations between pairs of each of the variables would then be cal- culated.Letusimaginethattheresearcherobtainsthecor- relations shown in the correlation matrix in Table 15.3. What does this table reveal about possible causes of student alienation? Two of the variables (relevance of
fra25960_ch15 in the table are sizable predictors of such alienation. Nevertheless, to remind you again, just because these variables predict student alienation, you should not as- sume that they cause it. Furthermore, something of a problem exists in the fact that the two predictor vari- ables correlate with each other. As you can see, school enjoyment and perceived relevance of courses not only predict student alienation, but they also correlate highly with each other (r  .65). Now, does perceived rele- vance of courses affect student alienation independently of school enjoyment? Does school enjoyment affect stu- dent alienation independently of perception of course relevance? Path analysis can help the researcher deter- mine the answers to these questions. Path analysis, then, involves four basic steps. First, a theory that links several variables is formulated to explain a particular phenomenon of interest. In our ex- ample, the researcher theorized the following causal connections: (1) When students perceive their courses as being unrelated to their needs, they will not enjoy school; (2) if they have few friends in school, this will contribute to their lack of enjoyment, and (3) the more a student dislikes school and the fewer friends he or she has, the more alienated he or she will be. Second, the variables specified by the theory are then measured in some way.* Third, correlation coefficients are computed to indicate the strength of the relationship between each of the pairs of variables postulated in the theory. And, fourth, relationships among the correlation coefficients are analyzed in relation to the theory. Path analysis variables are typically shown in the type of diagram illustrated in Figure 15.5.† Each vari- able in the theory is shown in the figure. Each arrow indicates a hypothesized causal relationship in the direc- tion of the arrow. Thus, liking for school is hypothesized to influence alienation; number of friends influences school enjoyment, and so on. Notice that in this exam- ple all of the arrows point in one direction only. This means that the first variable is hypothesized to influence the second variable, but not vice versa. Numbers similar (but not identical) to correlation coefficients are calcu- lated for each pair of variables. If the results were as shown in Figure 15.5, the causal theory of the re- searcher would be supported. Do you see why?*
Structural Modeling. Structural modeling is a so- phisticated method for exploring and possibly confirm- ing causation among several variables. Its complexity is beyond the scope of this text. Suffice it to say that it combines multiple regression, path analysis, and factor analysis. The computations are greatly simplified by use of computer programs; the computer program most widely used is probably LISREL.1
0/5000
Dari: -
Ke: -
Hasil (Bahasa Indonesia) 1: [Salinan]
Disalin!
Path Analysis. Path analysis is used to test the like- lihood of a causal connection among three or more variables. Some of the other techniques we have described can be used to explore theories about causal- ity, but path analysis is far more powerful than the rest. Although a detailed explanation of this technique is too technical for inclusion here, the essential idea behind path analysis is to formulate a theory about the possible causes of a particular phenomenon (such as student alienation)—that is, to identify causal variables that could explain why the phenomenon occurs—and then to determine whether correlations among all the vari- ables are consistent with the theory. Suppose a researcher theorizes as follows: (1) Certain students are more alienated in school than others because they do not find school enjoyable and because they have few friends; (2) they do not find school enjoyable partly because they have few friends and partly because they do not perceive their courses as being in any way related to their needs; and (3) perceived relevance of courses is re- lated slightly to number of friends. The researcher would thenmeasureeachofthesevariables(degreeofalienation, personal relevance of courses, enjoyment in school, and numberoffriends)foranumberofstudents.Correlations between pairs of each of the variables would then be cal- culated.Letusimaginethattheresearcherobtainsthecor- relations shown in the correlation matrix in Table 15.3. What does this table reveal about possible causes of student alienation? Two of the variables (relevance offra25960_ch15 in the table are sizable predictors of such alienation. Nevertheless, to remind you again, just because these variables predict student alienation, you should not as- sume that they cause it. Furthermore, something of a problem exists in the fact that the two predictor vari- ables correlate with each other. As you can see, school enjoyment and perceived relevance of courses not only predict student alienation, but they also correlate highly with each other (r  .65). Now, does perceived rele- vance of courses affect student alienation independently of school enjoyment? Does school enjoyment affect stu- dent alienation independently of perception of course relevance? Path analysis can help the researcher deter- mine the answers to these questions. Path analysis, then, involves four basic steps. First, a theory that links several variables is formulated to explain a particular phenomenon of interest. In our ex- ample, the researcher theorized the following causal connections: (1) When students perceive their courses as being unrelated to their needs, they will not enjoy school; (2) if they have few friends in school, this will contribute to their lack of enjoyment, and (3) the more a student dislikes school and the fewer friends he or she has, the more alienated he or she will be. Second, the variables specified by the theory are then measured in some way.* Third, correlation coefficients are computed to indicate the strength of the relationship between each of the pairs of variables postulated in the theory. And, fourth, relationships among the correlation coefficients are analyzed in relation to the theory. Path analysis variables are typically shown in the type of diagram illustrated in Figure 15.5.† Each vari- able in the theory is shown in the figure. Each arrow indicates a hypothesized causal relationship in the direc- tion of the arrow. Thus, liking for school is hypothesized to influence alienation; number of friends influences school enjoyment, and so on. Notice that in this exam- ple all of the arrows point in one direction only. This means that the first variable is hypothesized to influence the second variable, but not vice versa. Numbers similar (but not identical) to correlation coefficients are calcu- lated for each pair of variables. If the results were as shown in Figure 15.5, the causal theory of the re- searcher would be supported. Do you see why?*Structural Modeling. Structural modeling is a so- phisticated method for exploring and possibly confirm- ing causation among several variables. Its complexity is beyond the scope of this text. Suffice it to say that it combines multiple regression, path analysis, and factor analysis. The computations are greatly simplified by use of computer programs; the computer program most widely used is probably LISREL.1
Sedang diterjemahkan, harap tunggu..
Hasil (Bahasa Indonesia) 2:[Salinan]
Disalin!
Path Analysis. Analisis jalur digunakan untuk menguji lihood seperti-dari hubungan sebab-akibat antara tiga atau lebih variabel. Beberapa teknik lain yang kita telah dijelaskan dapat digunakan untuk mengeksplorasi teori tentang ity causal-, tetapi analisis jalur jauh lebih kuat daripada yang lain. Meskipun penjelasan rinci tentang teknik ini terlalu teknis untuk dimasukkan di sini, ide penting di balik analisis jalur adalah untuk merumuskan teori tentang kemungkinan penyebab fenomena tertentu (seperti alienasi mahasiswa) -yaitu, untuk mengidentifikasi variabel kausal yang bisa menjelaskan mengapa fenomena tersebut terjadi-dan kemudian untuk menentukan apakah korelasi antara semua variabel yang konsisten dengan teori. Misalkan seorang peneliti berteori sebagai berikut: (1) siswa tertentu lebih terasing di sekolah daripada yang lain karena mereka tidak menemukan sekolah yang menyenangkan dan karena mereka memiliki beberapa teman; (2) mereka tidak menemukan sekolah yang menyenangkan sebagian karena mereka memiliki beberapa teman dan sebagian karena mereka tidak menganggap program mereka sebagai cara apapun yang berhubungan dengan kebutuhan mereka; dan (3) dirasakan relevansi program yang kembali lated sedikit untuk jumlah teman-teman. Peneliti akan thenmeasureeachofthesevariables (degreeofalienation, relevansi pribadi kursus, kenikmatan di sekolah, dan numberoffriends) foranumberofstudents.Correlations antara pasangan masing-masing variabel kemudian akan hubungan culated.Letusimaginethattheresearcherobtainsthecor- kal- ditampilkan dalam matriks korelasi pada Tabel 15.3. Apa tabel ini mengungkapkan tentang kemungkinan penyebab keterasingan mahasiswa? Dua variabel (relevansi
fra25960_ch15 dalam tabel adalah prediktor yang cukup besar dari keterasingan tersebut. Namun demikian, untuk mengingatkan Anda lagi, hanya karena variabel-variabel ini memprediksi keterasingan mahasiswa, Anda tidak harus F- sume bahwa mereka menyebabkan itu. Selain itu, sesuatu masalah ada dalam kenyataan bahwa dua prediktor variabel- ables berkorelasi satu sama lain. Seperti yang Anda lihat, kenikmatan sekolah dan dirasakan relevansi program tidak hanya memprediksi keterasingan mahasiswa, tetapi mereka juga berkorelasi tinggi dengan satu sama lain (r? .65). Sekarang , tidak dirasakan Vance rele- kursus mempengaruhi keterasingan mahasiswa mandiri kenikmatan sekolah? Apakah kenikmatan sekolah mempengaruhi murid penyok keterasingan secara independen dari persepsi saja relevansi? analisis jalur dapat membantu peneliti tambang keputusan dari jawaban atas pertanyaan-pertanyaan ini. analisis Path, kemudian .., melibatkan empat langkah dasar Pertama, teori yang menghubungkan beberapa variabel diformulasikan untuk menjelaskan fenomena tertentu yang menarik Dalam kami, contohnya, peneliti berteori koneksi kausal berikut: (1) Ketika siswa menganggap program mereka sebagai tidak berhubungan dengan kebutuhan mereka, mereka tidak akan menikmati sekolah; (2) jika mereka memiliki beberapa teman di sekolah, hal ini akan memberikan kontribusi untuk kurangnya kenikmatan, dan (3) lebih siswa tidak suka sekolah dan teman-teman sedikit ia memiliki, semakin terasing ia akan. Kedua, variabel yang ditentukan oleh teori kemudian diukur dalam beberapa cara. * Ketiga, koefisien korelasi dihitung untuk menunjukkan kekuatan hubungan antara masing-masing pasangan variabel disebutkan dalam teori. Dan, keempat, hubungan antara koefisien korelasi dianalisis dalam kaitannya dengan teori. Variabel analisis jalur biasanya ditampilkan dalam jenis diagram pada Gambar 15.5. † Setiap variabel- mampu dalam teori yang ditunjukkan pada gambar. Setiap panah menunjukkan hubungan kausal dihipotesiskan dalam menurut arah panah tersebut. Dengan demikian, menyukai untuk sekolah diduga mempengaruhi keterasingan; jumlah teman mempengaruhi kenikmatan sekolah, dan sebagainya. Perhatikan bahwa dalam-contoh ini ple semua panah menunjuk satu arah saja. Ini berarti bahwa variabel pertama dihipotesiskan mempengaruhi variabel kedua, namun tidak sebaliknya. Nomor yang sama (tapi tidak identik) dengan koefisien korelasi dikalkulasikan untuk setiap pasangan variabel. Jika hasilnya seperti yang ditunjukkan pada Gambar 15.5, teori penyebab pencari ulang akan didukung. Apakah Anda melihat mengapa? *
Struktural Modeling. Pemodelan struktural adalah metode yang canggih begitu- untuk menjelajahi dan mungkin confirm- ing penyebab antara beberapa variabel. Kompleksitas adalah di luar lingkup teks ini. Cukuplah untuk mengatakan bahwa itu menggabungkan regresi berganda, analisis jalur, dan analisis faktor. Perhitungan yang sangat sederhana dengan menggunakan program komputer; program komputer yang paling banyak digunakan mungkin LISREL.1
Sedang diterjemahkan, harap tunggu..
 
Bahasa lainnya
Dukungan alat penerjemahan: Afrikans, Albania, Amhara, Arab, Armenia, Azerbaijan, Bahasa Indonesia, Basque, Belanda, Belarussia, Bengali, Bosnia, Bulgaria, Burma, Cebuano, Ceko, Chichewa, China, Cina Tradisional, Denmark, Deteksi bahasa, Esperanto, Estonia, Farsi, Finlandia, Frisia, Gaelig, Gaelik Skotlandia, Galisia, Georgia, Gujarati, Hausa, Hawaii, Hindi, Hmong, Ibrani, Igbo, Inggris, Islan, Italia, Jawa, Jepang, Jerman, Kannada, Katala, Kazak, Khmer, Kinyarwanda, Kirghiz, Klingon, Korea, Korsika, Kreol Haiti, Kroat, Kurdi, Laos, Latin, Latvia, Lituania, Luksemburg, Magyar, Makedonia, Malagasi, Malayalam, Malta, Maori, Marathi, Melayu, Mongol, Nepal, Norsk, Odia (Oriya), Pashto, Polandia, Portugis, Prancis, Punjabi, Rumania, Rusia, Samoa, Serb, Sesotho, Shona, Sindhi, Sinhala, Slovakia, Slovenia, Somali, Spanyol, Sunda, Swahili, Swensk, Tagalog, Tajik, Tamil, Tatar, Telugu, Thai, Turki, Turkmen, Ukraina, Urdu, Uyghur, Uzbek, Vietnam, Wales, Xhosa, Yiddi, Yoruba, Yunani, Zulu, Bahasa terjemahan.

Copyright ©2025 I Love Translation. All reserved.

E-mail: