Using 2D gel-MS analysis of CEP proteinsin light exposed rat retinas,  terjemahan - Using 2D gel-MS analysis of CEP proteinsin light exposed rat retinas,  Bahasa Indonesia Bagaimana mengatakan

Using 2D gel-MS analysis of CEP pro

Using 2D gel-MS analysis of CEP proteins
in light exposed rat retinas, Crabb found several glycolytic enzymes and structural proteins
that were adducted with CEP (unpublished). In preliminary studies, we found that CEP-protein
adducts were present in rat ROS at all times of the day and night as well as during intense light
exposure (Organisciak et al., 2008).
In humans, elevated levels of CEP adducts, and other oxidative protein modifications, were
found in drusen from AMD patient eyes compared to eyes from age-matched controls without
disease (Crabb et al., 2002). Unknown at this time is the extent of CEP adduction in each
protein and the effects of CEP modification on enzyme activity or protein function. The origin
(s) of CEP adducts in the RPE also remains an open question, as both ROS and choroidal blood
are possible sources. Elevated CEP immunoreactivity and anti-CEP autoantibody levels were
found in serum from AMD patients (Gu et al., 2003). Likewise, CEP immunostaining is present
in photoreceptors and RPE from Balb/c mice (Gu et al., 2003). Furthermore, although DHA
bound to human serum albumin imparted protection against neuronal ischemia (Belayev et
al., 2005), immunization of mice with CEP bound to mouse albumin produced an RPE
pathology similar to that seen in AMD (Hollyfield et al., 2008). In an ongoing AREDS clinical
trial, dietary polyunsaturated fatty acids are now being tested for their potential benefit in AMD
patients. It seems reasonable to expect that DHA oxidation and perhaps CEP auto-antibody
formation will also occur. Possibly, the cellular, or subcellular, locations of DHA and its
metabolites will be important in determining whether beneficial or detrimental effects will be
seen.
4. Animal Models and Retinal Light Damage
4.1 Genetic Modifiers
The advent of transgenic animals and gene knockout models has provided new opportunities
to examine retinal degenerations based on specific amino acid mutations or the absence of
specific proteins. Using these models, both enhanced light damage and protection against light
damage have been found. Hao et al. (2002) tested transducin and s-antigen null mice in a light
damage paradigm of high intensity and low intensity light. They found visual cell death
depended on visual transduction at lower light levels, but was independent of transducin activity at high light levels. As mentioned earlier, arrestin KO mice are highly susceptible to
light damage (Chen et al., 1999). In contrast, c-fos KO mice are protected against light-induced
retinal cell apoptosis (Hafezi et al., 1997b). Yet the deletion of c-fos did not protect rd mice
from retinal degeneration (Hafezi et al., 1998), nor did it delay cell death in rhodopsin null
mice (Hobson et al., 2001). This suggests that redundant apoptotic pathways exist, and that
they are differentially expressed in genetic animal models and environmentally induced retinal
degenerations. Over-expression of the anti-apoptotic protein bcl-2 effectively reduced retinal
cell death in the rd mouse and in an opsin mutant (334ter) mouse (Chen et al., 1996). Bcl-2
over-expression also resulted in decreased photoreceptor loss following prolonged light
exposure (Chen et al., 1996), but this may have been a result of shortened ROS. Joseph and Li
(1996) reported light damage protection in bcl-2 transgenic mice, but they attributed the effect
to lower rhodopsin levels than are found in wild type animals.
The relationship between an RPE-65 polymorphism and light damage susceptibility has
complicated some genetic studies, but also helped to clarify the role of rhodopsin in light
damage. Using quantitative trait loci in several different mouse strains, Danciger et al.
(2000) found a good correlation between RPE-65 with methionine 450 and light damage
protection versus RPE-65 leucine 450 and enhanced light damage susceptibility. They proposed
that methionine oxidation in RPE-65 slows rhodopsin regeneration, thereby reducing the extent
of light damage. Subsequently, RPE-65 activity was confirmed to be the rate limiting step in
rhodopsin regeneration in mice (Grimm et al., 2000c; Wenzel et al., 2003). More recently, a
light sensitive mouse strain (NZW/LacJ) was found to have the protective RPE-65 met450
variant (Danciger et al., 2005), indicating that other light damage genes exist (Danciger et
al., 2000; ibid 2005). Frequently, rhodopsin mutations heighten susceptibility to light, be it
from chronic dim cyclic light exposure (Naash et al., 1996), or from acute intense light (Wang
et al., 1997). Recently, White et al. (2007) found that mice with a T17M rhodopsin mutation,
which affects glycosylation, exhibited retinal damage after only a few minutes of intense light
treatment. A rhodopsin glycosylation defect in dogs (T4R) also leads to extreme light
sensitivity (Gu et al., 2009). The amino terminal region of rhodopsin contains its glycosylation
sites and is found on the intradiskal side of ROS membranes. The release of trans-retinal from
bleached rhodopsin also appears to be intradiskal, raising the possibility that these light
sensitive animal models might exhibit abnormal retinaldehyde metabolism.
4.2 Cone Cell Dominant Retinas
Rhodopsin’s absorption spectrum and the role of phototransduction are central to
understanding lightinduced damage in rod photoreceptors. Our understanding of cone
phototransduction (Fu and Yau 2008), of cone genes (Corbo et al. 2007), of cone cell biology
(Jacobson et al., 2007), and of the diurnal nature of most cone dominant retinas still lags behind
our understanding of rods (Mata et al., 2002; Kefalov et al., 2005; Mata et al., 2005; Muniz
et al., 2007; reviewed in Mustafi et al., 2009). Discerning pathways that affect cone survival
after light insult will be complicated, yet our human reliance on cone-based vision places a
compelling focus on cones. How does light damage manifest in cone photoreceptors, and why
are cones remarkably resistant to light damage compared to rods?
This issue was addressed early on, when Cicerone (1976) and LaVail (1976a) each noted cone
survival in light-damaged albino rat retina, suggesting that cone cells are more resilient than
rods in the face of light insult. However, many studies of mouse or rat retina since then have
recorded cone death which, depending on light exposure conditions and phenotype, can occur
within days (e.g. Krebs et al. 2009) or may be markedly delayed (Tanito et al., 2007a). The
consensus is that cone death is secondary to loss of the far more numerous rods, in other words
a bystander effect (Chrystostomou et al., 2008, ibid. 2009, Krebs et al., 2009). Rod cell loss
could deprive cones of a rod-derived survival factor (Lorentz et al. 2006, Yang et al., 2009)
and possibly induce an excess of outer retinal oxygen (Stone et al., 1999) that may be toxic to
cones. Progressively impaired choroidal function, likely due to massive neuronal and glial
remodeling (Marc et al., 2008), has a time course consistent with the gradual starvation of
cones that initially survive light insult (Tanito et al., 2007). These proposed causes of secondary
cone cell death in rod-dominant nocturnal rodent retina are not mutually exclusive.
Ripps (2002) has proposed an interesting variant of the bystander effect in which gap junction
channels are the route by which a toxic product originating in damaged rods is passed directly
to the cytoplasm of otherwise healthy neighboring cones. A gap junction-dependent example
of natural cell death has been demonstrated in normal development of the mouse inner retinal
layers (Cusato et al., 2003). Rod-cone coupling by gap junctions is also stronger at night than
in the daytime (Ribelayga et al., 2008), consistent with potentiated light damage at night, but
to our knowledge, there has been no attempt to examine the role of gap junctions in retinal
light damage.
Because nocturnal rodent retinas normally have few cones and lack a cone-rich region
approximating the human fovea, there have been attempts to enhance the representation of
cones in model systems. The 661W cell line isolated from mouse retinal tumors is cone-like
(Tan et al., 2004; Al-Ubaidi et al., 2008) and permits in vitro experimental approaches. The
661W cell line has been used recently to model “cone” light damage (Kanan et al., 2007; Yang
et al., 2007a), revealing a possible signal pathway between light-damaged “cones” and
microglia (Yang et al., 2007b). The Nrl null (Nrl−/−) mouse retina develops a rodless retina
enriched in cells that resemble short wavelength absorbing (S-) cones (Mears et al., 2001).
Unusual features, such as the “cone” whorls found in the Nrl−/− retina (Mears et al., 2001,
Dang et al., 2004), support the notion that Nrl−/− retina may contain “hybrid” photoreceptors
(Mustafi et al., 2009). A preliminary study (Glösmann and Peichl, 2007) has showed that Scones,
but not mid wavelength (M-) cones, suffer light damage in albino rats maintained in
bright cyclic light (160 lux) for 4 weeks. This finding suggests that S-cone-like photoreceptors
in the Nrl−/− mouse retina might be vulnerable to light damage, but this remains to be tested.
Neither of these cone-enhanced systems, nor the rodent retinas from which they were derived,
bear much structural resemblance to human central retina in terms of cone numbers or
distributions. For example, human retina is estimated to contain 5–6% cones, concentrated in
the macular region, while in nocturnal rodents the 1–3% cone population is arrayed essentially
uniformly throughout the retina. It has been logically argued that diurnal rodents, including
rod- and cone-dominant species, may be more useful models of cone cell biology in health and
disease (Table 1). In stark contrast to results from rats and mice, however, the retinas of diurnal
rodents have proven markedly difficult to light damage. Collier and his associates used diurnal
gray squirrels in light damage studies (Collier et al., 1989).
0/5000
Dari: -
Ke: -
Hasil (Bahasa Indonesia) 1: [Salinan]
Disalin!
Using 2D gel-MS analysis of CEP proteinsin light exposed rat retinas, Crabb found several glycolytic enzymes and structural proteinsthat were adducted with CEP (unpublished). In preliminary studies, we found that CEP-proteinadducts were present in rat ROS at all times of the day and night as well as during intense lightexposure (Organisciak et al., 2008).In humans, elevated levels of CEP adducts, and other oxidative protein modifications, werefound in drusen from AMD patient eyes compared to eyes from age-matched controls withoutdisease (Crabb et al., 2002). Unknown at this time is the extent of CEP adduction in eachprotein and the effects of CEP modification on enzyme activity or protein function. The origin(s) of CEP adducts in the RPE also remains an open question, as both ROS and choroidal bloodare possible sources. Elevated CEP immunoreactivity and anti-CEP autoantibody levels werefound in serum from AMD patients (Gu et al., 2003). Likewise, CEP immunostaining is presentin photoreceptors and RPE from Balb/c mice (Gu et al., 2003). Furthermore, although DHAbound to human serum albumin imparted protection against neuronal ischemia (Belayev etal., 2005), immunization of mice with CEP bound to mouse albumin produced an RPEpathology similar to that seen in AMD (Hollyfield et al., 2008). In an ongoing AREDS clinicaltrial, dietary polyunsaturated fatty acids are now being tested for their potential benefit in AMDpatients. It seems reasonable to expect that DHA oxidation and perhaps CEP auto-antibodyformation will also occur. Possibly, the cellular, or subcellular, locations of DHA and itsmetabolites will be important in determining whether beneficial or detrimental effects will beseen.4. Animal Models and Retinal Light Damage4.1 Genetic ModifiersThe advent of transgenic animals and gene knockout models has provided new opportunitiesto examine retinal degenerations based on specific amino acid mutations or the absence ofspecific proteins. Using these models, both enhanced light damage and protection against lightdamage have been found. Hao et al. (2002) tested transducin and s-antigen null mice in a lightdamage paradigm of high intensity and low intensity light. They found visual cell deathdepended on visual transduction at lower light levels, but was independent of transducin activity at high light levels. As mentioned earlier, arrestin KO mice are highly susceptible tolight damage (Chen et al., 1999). In contrast, c-fos KO mice are protected against light-inducedretinal cell apoptosis (Hafezi et al., 1997b). Yet the deletion of c-fos did not protect rd micefrom retinal degeneration (Hafezi et al., 1998), nor did it delay cell death in rhodopsin nullmice (Hobson et al., 2001). This suggests that redundant apoptotic pathways exist, and thatthey are differentially expressed in genetic animal models and environmentally induced retinaldegenerations. Over-expression of the anti-apoptotic protein bcl-2 effectively reduced retinalcell death in the rd mouse and in an opsin mutant (334ter) mouse (Chen et al., 1996). Bcl-2over-expression also resulted in decreased photoreceptor loss following prolonged lightexposure (Chen et al., 1996), but this may have been a result of shortened ROS. Joseph and Li(1996) reported light damage protection in bcl-2 transgenic mice, but they attributed the effectto lower rhodopsin levels than are found in wild type animals.The relationship between an RPE-65 polymorphism and light damage susceptibility hascomplicated some genetic studies, but also helped to clarify the role of rhodopsin in lightdamage. Using quantitative trait loci in several different mouse strains, Danciger et al.(2000) found a good correlation between RPE-65 with methionine 450 and light damageprotection versus RPE-65 leucine 450 and enhanced light damage susceptibility. They proposedthat methionine oxidation in RPE-65 slows rhodopsin regeneration, thereby reducing the extentof light damage. Subsequently, RPE-65 activity was confirmed to be the rate limiting step inrhodopsin regeneration in mice (Grimm et al., 2000c; Wenzel et al., 2003). More recently, alight sensitive mouse strain (NZW/LacJ) was found to have the protective RPE-65 met450variant (Danciger et al., 2005), indicating that other light damage genes exist (Danciger etal., 2000; ibid 2005). Frequently, rhodopsin mutations heighten susceptibility to light, be itfrom chronic dim cyclic light exposure (Naash et al., 1996), or from acute intense light (Wanget al., 1997). Recently, White et al. (2007) found that mice with a T17M rhodopsin mutation,which affects glycosylation, exhibited retinal damage after only a few minutes of intense lighttreatment. A rhodopsin glycosylation defect in dogs (T4R) also leads to extreme lightsensitivity (Gu et al., 2009). The amino terminal region of rhodopsin contains its glycosylationsites and is found on the intradiskal side of ROS membranes. The release of trans-retinal frombleached rhodopsin also appears to be intradiskal, raising the possibility that these lightsensitive animal models might exhibit abnormal retinaldehyde metabolism.4.2 Cone Cell Dominant RetinasRhodopsin’s absorption spectrum and the role of phototransduction are central tounderstanding lightinduced damage in rod photoreceptors. Our understanding of conephototransduction (Fu and Yau 2008), of cone genes (Corbo et al. 2007), of cone cell biology(Jacobson et al., 2007), and of the diurnal nature of most cone dominant retinas still lags behindour understanding of rods (Mata et al., 2002; Kefalov et al., 2005; Mata et al., 2005; Munizet al., 2007; reviewed in Mustafi et al., 2009). Discerning pathways that affect cone survivalafter light insult will be complicated, yet our human reliance on cone-based vision places acompelling focus on cones. How does light damage manifest in cone photoreceptors, and whyare cones remarkably resistant to light damage compared to rods?This issue was addressed early on, when Cicerone (1976) and LaVail (1976a) each noted conesurvival in light-damaged albino rat retina, suggesting that cone cells are more resilient thanrods in the face of light insult. However, many studies of mouse or rat retina since then haverecorded cone death which, depending on light exposure conditions and phenotype, can occurwithin days (e.g. Krebs et al. 2009) or may be markedly delayed (Tanito et al., 2007a). Theconsensus is that cone death is secondary to loss of the far more numerous rods, in other wordsa bystander effect (Chrystostomou et al., 2008, ibid. 2009, Krebs et al., 2009). Rod cell losscould deprive cones of a rod-derived survival factor (Lorentz et al. 2006, Yang et al., 2009)and possibly induce an excess of outer retinal oxygen (Stone et al., 1999) that may be toxic tocones. Progressively impaired choroidal function, likely due to massive neuronal and glialremodeling (Marc et al., 2008), has a time course consistent with the gradual starvation ofcones that initially survive light insult (Tanito et al., 2007). These proposed causes of secondarycone cell death in rod-dominant nocturnal rodent retina are not mutually exclusive.Ripps (2002) has proposed an interesting variant of the bystander effect in which gap junctionchannels are the route by which a toxic product originating in damaged rods is passed directlyto the cytoplasm of otherwise healthy neighboring cones. A gap junction-dependent exampleof natural cell death has been demonstrated in normal development of the mouse inner retinallayers (Cusato et al., 2003). Rod-cone coupling by gap junctions is also stronger at night thanin the daytime (Ribelayga et al., 2008), consistent with potentiated light damage at night, butto our knowledge, there has been no attempt to examine the role of gap junctions in retinallight damage.Because nocturnal rodent retinas normally have few cones and lack a cone-rich regionapproximating the human fovea, there have been attempts to enhance the representation ofcones in model systems. The 661W cell line isolated from mouse retinal tumors is cone-like(Tan et al., 2004; Al-Ubaidi et al., 2008) and permits in vitro experimental approaches. The661W cell line has been used recently to model “cone” light damage (Kanan et al., 2007; Yanget al., 2007a), revealing a possible signal pathway between light-damaged “cones” andmicroglia (Yang et al., 2007b). The Nrl null (Nrl−/−) mouse retina develops a rodless retinaenriched in cells that resemble short wavelength absorbing (S-) cones (Mears et al., 2001).Unusual features, such as the “cone” whorls found in the Nrl−/− retina (Mears et al., 2001,Dang et al., 2004), support the notion that Nrl−/− retina may contain “hybrid” photoreceptors(Mustafi et al., 2009). A preliminary study (Glösmann and Peichl, 2007) has showed that Scones,but not mid wavelength (M-) cones, suffer light damage in albino rats maintained inbright cyclic light (160 lux) for 4 weeks. This finding suggests that S-cone-like photoreceptorsin the Nrl−/− mouse retina might be vulnerable to light damage, but this remains to be tested.Neither of these cone-enhanced systems, nor the rodent retinas from which they were derived,bear much structural resemblance to human central retina in terms of cone numbers ordistributions. For example, human retina is estimated to contain 5–6% cones, concentrated inthe macular region, while in nocturnal rodents the 1–3% cone population is arrayed essentiallyuniformly throughout the retina. It has been logically argued that diurnal rodents, includingrod- and cone-dominant species, may be more useful models of cone cell biology in health anddisease (Table 1). In stark contrast to results from rats and mice, however, the retinas of diurnalrodents have proven markedly difficult to light damage. Collier and his associates used diurnalgray squirrels in light damage studies (Collier et al., 1989).
Sedang diterjemahkan, harap tunggu..
Hasil (Bahasa Indonesia) 2:[Salinan]
Disalin!
Dengan menggunakan analisis gel-MS 2D protein CEP
dalam cahaya terkena retina tikus, Crabb menemukan beberapa enzim glikolitik dan protein struktural
yang adduksi dengan CEP (tidak dipublikasikan). Dalam penelitian pendahuluan, kami menemukan bahwa CEP-protein
adduct hadir pada tikus ROS setiap saat dari hari dan malam serta selama cahaya yang kuat
paparan (Organisciak et al., 2008).
Pada manusia, peningkatan kadar adduct CEP, dan modifikasi protein oksidatif lainnya, yang
ditemukan di drusen dari mata pasien AMD dibandingkan dengan mata dari kontrol usia yang sama tanpa
penyakit (Crabb et al., 2002). Diketahui saat ini adalah tingkat CEP adduksi di setiap
protein dan efek modifikasi CEP pada aktivitas enzim atau fungsi protein. Asal
(s) dari adduct CEP di RPE juga tetap merupakan pertanyaan terbuka, baik sebagai ROS dan darah choroidal
adalah sumber. Peningkatan CEP immunoreactivity dan-CEP anti tingkat autoantibodi yang
ditemukan dalam serum dari pasien AMD (Gu et al., 2003). Demikian juga, CEP immunostaining hadir
dalam fotoreseptor dan RPE dari tikus Balb / c (Gu et al., 2003). Selain itu, meskipun DHA
terikat serum albumin manusia disampaikan perlindungan terhadap iskemia neuronal (Belayev et
al., 2005), imunisasi tikus dengan CEP terikat albumin tikus menghasilkan RPE
patologi sama dengan yang terlihat di AMD (Hollyfield et al., 2008) . Dalam berlangsung AREDS klinis
percobaan, asam lemak tak jenuh ganda diet kini sedang diuji untuk kepentingan potensi mereka di AMD
pasien. Tampaknya masuk akal untuk mengharapkan bahwa DHA oksidasi dan mungkin CEP auto-antibodi
formasi juga akan terjadi. Mungkin, lokasi selular, atau subselular, DHA dan yang
metabolit akan menjadi penting dalam menentukan apakah efek menguntungkan atau merugikan akan
terlihat.
4. Hewan Model dan retina Cahaya Kerusakan
4.1 genetik Pengubah
Munculnya hewan transgenik dan model knockout gen telah memberikan peluang baru
untuk memeriksa degenerasi retina berdasarkan mutasi asam amino tertentu atau tidak adanya
protein spesifik. Menggunakan model ini, baik kerusakan ringan ditingkatkan dan perlindungan terhadap cahaya
kerusakan telah ditemukan. Hao et al. (2002) menguji transducin dan s-antigen tikus nol dalam cahaya
paradigma kerusakan intensitas tinggi dan intensitas cahaya rendah. Mereka menemukan kematian sel visual yang
tergantung pada transduksi visual yang pada tingkat cahaya rendah, tetapi independen kegiatan transducin pada tingkat cahaya yang tinggi. Seperti disebutkan sebelumnya, tikus KO arrestin sangat rentan terhadap
kerusakan ringan (Chen et al., 1999). Sebaliknya, tikus c-fos KO dilindungi terhadap sinar-induced
apoptosis sel retina (Hafezi et al., 1997b). Namun penghapusan c-fos tidak melindungi tikus rd
dari degenerasi retina (Hafezi et al., 1998), juga tidak menunda kematian sel dalam rhodopsin nol
tikus (Hobson et al., 2001). Hal ini menunjukkan bahwa jalur berlebihan apoptosis ada, dan bahwa
mereka berbeda-beda dinyatakan dalam model hewan genetik dan lingkungan diinduksi retina
degenerasi. Over-ekspresi retina protein anti-apoptosis bcl-2 secara efektif mengurangi
kematian sel pada tikus rd dan dalam opsin mutan (334ter) tikus (Chen et al., 1996). Bcl-2
over-ekspresi juga mengakibatkan penurunan kehilangan fotoreseptor mengikuti cahaya berkepanjangan
paparan (Chen et al., 1996), tapi ini mungkin akibat dari disingkat ROS. Yusuf dan Li
(1996) melaporkan perlindungan kerusakan ringan di bcl-2 tikus transgenik, tetapi mereka disebabkan efek
untuk menurunkan kadar rhodopsin daripada yang ditemukan dalam jenis binatang liar.
Hubungan antara RPE-65 polimorfisme dan kerentanan kerusakan ringan telah
rumit beberapa genetik studi, tetapi juga membantu untuk memperjelas peran rhodopsin dalam cahaya
kerusakan. Menggunakan sifat lokus kuantitatif dalam beberapa strain tikus yang berbeda, Danciger et al.
(2000) menemukan korelasi yang baik antara RPE-65 dengan metionin 450 dan rusak ringan
perlindungan terhadap RPE-65 leusin 450 dan ditingkatkan kerentanan kerusakan ringan. Mereka mengusulkan
bahwa oksidasi metionin dalam RPE-65 memperlambat rhodopsin regenerasi, sehingga mengurangi tingkat
kerusakan ringan. Selanjutnya, RPE-65 kegiatan dikonfirmasi untuk menjadi tingkat membatasi langkah dalam
rhodopsin regenerasi pada tikus (Grimm et al, 2000c;.. Wenzel et al, 2003). Baru-baru ini, sebuah
ketegangan cahaya tikus sensitif (NZW / LacJ) ditemukan memiliki pelindung RPE-65 met450
varian, menunjukkan bahwa gen kerusakan ringan lainnya ada (Danciger et (Danciger et al, 2005).
al, 2000;. ibid 2005 ). Sering, rhodopsin mutasi meningkatkan kerentanan terhadap cahaya, baik itu
dari paparan sinar siklik redup kronis (Naash et al., 1996), atau dari cahaya yang kuat akut (Wang
et al., 1997). Baru-baru ini, White et al. (2007) menemukan bahwa tikus dengan mutasi T17M rhodopsin,
yang mempengaruhi glikosilasi, dipamerkan kerusakan retina setelah hanya beberapa menit dari cahaya yang kuat
pengobatan. Sebuah cacat rhodopsin glikosilasi pada anjing (T4R) juga menyebabkan cahaya ekstrim
sensitivitas (Gu et al., 2009). Wilayah terminal amino dari rhodopsin mengandung glikosilasi yang
situs dan ditemukan di sisi intradiskal membran ROS. Pelepasan trans-retinal dari
dikelantang rhodopsin juga tampaknya intradiskal, meningkatkan kemungkinan bahwa cahaya
model hewan yang sensitif mungkin menunjukkan metabolisme retinaldehid abnormal.
4.2 Cone Sel dominan retina
spektrum penyerapan Rhodopsin dan peran fototransduksi adalah pusat untuk
memahami kerusakan lightinduced di fotoreseptor batang. Pemahaman kita tentang kerucut
fototransduksi (Fu dan Yau 2008), gen kerucut (Corbo et al. 2007), biologi sel kerucut
(Jacobson et al., 2007), dan sifat diurnal paling kerucut retina dominan masih tertinggal
kami pemahaman batang (Mata et al, 2002;. Kefalov et al, 2005;.. Mata et al, 2005; Muniz
et al, 2007;. Ulasan di Mustafi et al, 2009.). Jalur cerdas yang mempengaruhi kerucut hidup
setelah penghinaan ringan akan menjadi lebih rumit, namun ketergantungan manusia pada visi berbasis kerucut menempatkan
fokus menarik pada kerucut. Bagaimana kerusakan ringan terwujud dalam fotoreseptor kerucut, dan mengapa
adalah kerucut sangat tahan terhadap kerusakan ringan dibandingkan dengan batang?
Masalah ini ditujukan awal, ketika Cicerone (1976) dan LaVail (1976a) setiap kerucut mencatat
hidup dalam terang-rusak albino tikus retina , menunjukkan bahwa sel-sel kerucut yang lebih tahan dari
batang dalam menghadapi penghinaan ringan. Namun, banyak penelitian mouse atau tikus retina sejak itu telah
mencatat kematian kerucut yang, tergantung pada kondisi paparan cahaya dan fenotipe, dapat terjadi
dalam beberapa hari (misalnya Krebs et al. 2009) atau mungkin nyata tertunda (Tanito et al., 2007a) . The
konsensus bahwa kematian kerucut adalah sekunder untuk hilangnya jauh lebih banyak batang, dengan kata lain
efek pengamat (Chrystostomou et al., 2008, ibid. 2009, Krebs et al., 2009). Hilangnya sel batang
bisa menghilangkan kerucut dari faktor survival batang yang diturunkan (Lorentz et al. 2006, Yang et al., 2009)
dan mungkin menyebabkan kelebihan oksigen retina luar (Batu et al., 1999) yang mungkin beracun untuk
kerucut . Semakin gangguan fungsi choroidal, mungkin karena saraf besar dan glial
renovasi (Marc et al., 2008), memiliki lapangan waktu yang konsisten dengan kelaparan bertahap
kerucut yang awalnya bertahan cahaya penghinaan (Tanito et al., 2007). Ini penyebab diusulkan sekunder
kematian sel kerucut di batang-dominan tikus nokturnal retina tidak saling eksklusif.
Ripps (2002) telah mengusulkan varian yang menarik dari efek pengamat yang gap junction
saluran adalah rute dimana produk beracun yang berasal dari batang yang rusak dilewatkan langsung
ke sitoplasma kerucut tetangga sehat. Sebuah tergantung persimpangan kesenjangan contoh
dari kematian sel alami telah dibuktikan dalam perkembangan normal dari mouse retina dalam
lapisan (Cusato et al., 2003). Rod-kerucut kopling dengan gap junction juga lebih kuat pada malam hari dibandingkan
pada siang hari (Ribelayga et al., 2008), konsisten dengan kerusakan ringan potentiated di malam hari, tapi
untuk pengetahuan kita, belum ada upaya untuk menguji peran gap junction di retina
kerusakan ringan.
Karena retina tikus nokturnal biasanya memiliki beberapa kerucut dan tidak memiliki wilayah yang kaya kerucut
mendekati fovea manusia, telah ada upaya untuk meningkatkan representasi dari
kerucut dalam sistem Model. Garis sel 661W diisolasi dari tumor retina mouse kerucut seperti
(Tan et al, 2004;.. Al-Ubaidi et al, 2008) dan izin in vitro pendekatan eksperimental. The
garis sel 661W telah digunakan baru-baru ini untuk model "cone" kerusakan ringan (Kanan et al, 2007;. Yang
. et al, 2007a), mengungkapkan jalur yang mungkin sinyal antara cahaya yang rusak "kerucut" dan
mikroglia (Yang et al. , 2007b). NRL nol (NRL - / -) retina tikus mengembangkan retina rodless
diperkaya dalam sel yang menyerupai panjang gelombang pendek menyerap (S-) kerucut (Mears et al, 2001.).
fitur yang tidak biasa, seperti "cone" whorls ditemukan di nrl - / - (. Mears et al, 2001, retina
. Dang et al, 2004), mendukung gagasan bahwa NRL - / - retina mungkin berisi "hybrid" fotoreseptor
(Mustafi et al, 2009.). Sebuah studi pendahuluan (Glösmann dan Peichl, 2007) telah menunjukkan bahwa Scones,
tapi tidak pertengahan panjang gelombang (M) kerucut, mengalami kerusakan ringan pada tikus albino dipelihara dalam
cahaya terang siklik (160 lux) selama 4 minggu. Temuan ini menunjukkan bahwa fotoreseptor S-kerucut seperti
di NRL - / -. retina tikus mungkin rentan terhadap kerusakan ringan, tapi ini masih harus diuji
Tak satu pun dari sistem ini kerucut ditingkatkan, maupun retina tikus dari mana mereka berasal,
menghasilkan banyak kemiripan struktural untuk retina pusat manusia dalam hal jumlah kerucut atau
distribusi. Misalnya, retina manusia diperkirakan mengandung 5-6% kerucut, terkonsentrasi di
wilayah makula, sedangkan pada hewan pengerat nokturnal populasi kerucut 1-3% tersusun dasarnya
merata di seluruh retina. Sudah logis berpendapat bahwa tikus diurnal, termasuk
spesies rod- dan kerucut-dominan, mungkin model yang lebih berguna biologi sel kerucut dalam kesehatan dan
penyakit (Tabel 1). Berbeda sekali dengan hasil dari tikus dan tikus, namun retina diurnal
tikus telah terbukti nyata sulit untuk kerusakan ringan. Collier dan rekan-rekannya menggunakan diurnal
tupai abu-abu dalam studi kerusakan ringan (Collier et al., 1989).
Sedang diterjemahkan, harap tunggu..
 
Bahasa lainnya
Dukungan alat penerjemahan: Afrikans, Albania, Amhara, Arab, Armenia, Azerbaijan, Bahasa Indonesia, Basque, Belanda, Belarussia, Bengali, Bosnia, Bulgaria, Burma, Cebuano, Ceko, Chichewa, China, Cina Tradisional, Denmark, Deteksi bahasa, Esperanto, Estonia, Farsi, Finlandia, Frisia, Gaelig, Gaelik Skotlandia, Galisia, Georgia, Gujarati, Hausa, Hawaii, Hindi, Hmong, Ibrani, Igbo, Inggris, Islan, Italia, Jawa, Jepang, Jerman, Kannada, Katala, Kazak, Khmer, Kinyarwanda, Kirghiz, Klingon, Korea, Korsika, Kreol Haiti, Kroat, Kurdi, Laos, Latin, Latvia, Lituania, Luksemburg, Magyar, Makedonia, Malagasi, Malayalam, Malta, Maori, Marathi, Melayu, Mongol, Nepal, Norsk, Odia (Oriya), Pashto, Polandia, Portugis, Prancis, Punjabi, Rumania, Rusia, Samoa, Serb, Sesotho, Shona, Sindhi, Sinhala, Slovakia, Slovenia, Somali, Spanyol, Sunda, Swahili, Swensk, Tagalog, Tajik, Tamil, Tatar, Telugu, Thai, Turki, Turkmen, Ukraina, Urdu, Uyghur, Uzbek, Vietnam, Wales, Xhosa, Yiddi, Yoruba, Yunani, Zulu, Bahasa terjemahan.

Copyright ©2024 I Love Translation. All reserved.

E-mail: