- LC can be visualized as preview during its computation, enabling a d terjemahan - - LC can be visualized as preview during its computation, enabling a d Bahasa Indonesia Bagaimana mengatakan

- LC can be visualized as preview d

- LC can be visualized as preview during its computation, enabling a direct feed-back for the user on what VRay is computing.

Disadvantages
- Like the IM, LC too depends on the point of view, and the GI is computed for the set point of view only.
- LC does not produce excellent results when BUMP effects are present. For this reason it is better use it with the IM or the QMC GI when detailed Bump effects are present.

236/p221
Among these four methods, which is the best one to use and for which kind of scenes it is better to use a method rather than another one? The answer is not universal, even for the same scene and the same lighting. Some methods are more useful than others, if we talk about static, dynamic and fixed renders. It all depend on what one wants to obtain.
Figure 3.102 Panel showing all the GI computation methods present in VRay.
In the previous image the panel managing the GI in VRay is shown. It is subdivided in two sections. Primary bounces and secondary bounces.
Primary bounces represent the first step in light diffusion. Once emitted from the light source, light travels through space. When it encounters in an object, is it involved in various process: diffusion, refraction, reflection etc… in the drop down menu of primary bounces it is possible to choose the GI engine. It is possible to choose between the four methods available in VRay. In the next scene one can notice how both the sun and the sky contribute to the scene’s lighting. The sun is easily reproducible in 3ds max thanks to a normal direct light, while in VRay a special tool is available for the sky: VRay Environment, to be found in the renderer panel of VRay. Further on it will be explained in detail. For the moment, just imagine it as a way of simulatin the sky.
Figure 3.103 Scheme representing primary bounces.
Once the rays have collided once, VRay continues the computation of the path followed by the luminous flow thanks to a seconf rendering engine. In this case three among the four computation methods can be chosen.
Figur 3.104 Scheme representing secondary bounces.

237/p222
It is possible to light up parts of the scene not directly lit by the sources. VRay allows one to choose the system to be used for primary and secondary bounces. As one can see by the parameters present in the rollout VRay: Indirect illumination, it is possible to set their intensity, setting the multiplier. So, it is possible to control light as never before!
Figure 3.102 The Panel VRay: Indirect illumination (GI)
Parameters
On – it activates and deactivates the GI. When deactivated, VRay uses only the primary bounces for the scene’s illumination.
Figure 3.106 Bird-eye view and prospective view of the scene. It is composed by several snooker balls and a supporting plane. Illumination is generated by two VRayLights and by the Environment.
Figure 3.107 On the left image the scene is illuminated by the two VRayLights, because the GI is deactivated, while on the right one the skylight effect is added. Times are considerably increased, but so is image quality and photorealism too.
GI caustics
GI caustics represents and controls the light when it is reflected diffusely, reflective or refractive specularly.
Reflective GI caustic – this parameter allows indirect light, therefore the GI, to be reflected by objects like mirrors and reflective surfaces. It is turned off by default, for reflective GI contribution to the final illumination of the scene is usually low, other than stretching out rendering times and often introducing small flaws and noise. To be noticed: reflective GI caustics do not represent caustics, which are effects due to the collision of direct light onto specular objects.

238/p223
Figure 3.108 Scene rendered with the QMC+LC method with 25 Subdivs for QMC and 1.500 for the LC. The room is lit by the skylight only. In both scenes the parameters are the same, except for the activation of the reflective GI caustic parameter. The activation of this parameter would have been negligible with a completely opaque floor.

In the test shown two things must be noticed. The scene appears much more luminous by activating the reflective GI caustic parameter. This happens because the floor is a colored mirror and reflect the indirect light. Therefore in this case indirect illumination affects global illumination considerably, because the floor has a wide extension. In fact, as marked by the ceiling area, the reflection of indirect like produces new light, which in turn produces visible shadows on the ceiling. A real example of the GI reflection phenomenon might be illumination due to water flow. The solar light bouncing on the river’s survace, lights the underside of a bridge. Reflective GI caustic, which should in theory always be activated can produce artefacts. This happens because it computation requires many samples. If the number of subdivision is not enough, some colored dots might appear in some areas of the render instead of the reflective GI. In any case the best advice is to always keep it turned off, as its contribution of indirect illumination to the GI of the entire scene is often hardly noticeable. The second effect due to the activation of the parameter Reflective GI caustic is the light brown coloring of the whole scene, due to the floor reflection, in slanf known as Color Bleeding.

Refractive GI caustic – the activation of this parameter allows indirect light to pass through transparent objects. B aware that refractive GI caustic and caustics are not the same thing. The latter represent how the direct light passes through matter, whereas Refractive GI caustics represent how indirect light does the same.
Refractive GI caustic is to be kept active at all times; in fact it is turned on by default. In this way, for example, that skylight or any other light are able to pass through transparent surfaces, such as windows or a glass.
Figure 3.109 Exterior image rendered with VRaySun+VRaySky of VRay 1.49.03 QMC + LC. The GI does not pass through glasses if refractive GI caustic is deactivated, while the direct rays do it. Refractive GI caustics affects indirect light only. Deactivating it, the rooms of the building are in any case lit by the direct sun light, which is not able to filter through the transparent glass. Only if the refractive GI caustics are activated the GI is able to pass through the glass/windows.
Post-processing
The following series of parameter allows one to modify indirest illumination, meaning the GI alone before the final rendering calculation. As will be seen shortly, once IM, LC or PM has been saved, VRay allows one to modify contrast and saturation without having to re-calculate the whole GI. By changing the post-processing parameters it is possible to alter the GI, although the default values are the only which assure physically accurate results. The purpose of these parameters is to give the use greater control over the GI. Techinically speaking, these parameters permit GI corrections which are typical of image processing programs.

Saturation – this parameters controls GI saturation. If the calue is set to 0.0, this means that Global Illumination does not have any color, thus eliminating any type of color beleeding effect. Value 1.0 means that GI colors will remain unaltered. Values greater that 1 will increase contrast of GI and color bleeding.

239/p224
Contrast – this parameter, which acts together with contrast base, controls the GI contrast. With value at 0.01 GI will not have any contrast. At 1.0 GI will remain unaltered. Values greater than 1.0 will increase contrast.
Contrast base – this parameter controls the quantity of contrast applied by the contrast parameter. In other words it fixes the GI value which will not be modified during the calculating of contrast. The greater the value, the more GI will be influenced by the Contrast parameter.

Figure 3.110 summary scheme for Contrast and Contrast base parameters. The image which is hightlighted in purple shows a render with default parameters.

Save maps per frame – if this activated and the auto save function is being used, VRay saves GI maps (Irradiance Map, photon map, caustics and light cache) at the end of the rendering process of each frame, take note that VRay always saves the maps overwriting the same file. If it is disabled, VRay will create the various maps once only, at the end of rendering (from v1.5 RC3 this option is no longer available).

Primary Bounces
Multiplier – this parameter fixes the amount of direct light which contributes in illumination the scene. Value 1.0 will produce images which are physically correct and accurate. For correct results, it is advisable to leave Multiplier unaltered. Inside VRay there are many other options which allow one to change the amount of light within a given scene. Use this multiplier as a last resort.

Primary GI engine – with this pull-down meny, it is possible to specify which of the four available methods in VRay to use for the calculation of Primary diffuse Bounces.
- Irradiance amap (IM)
0/5000
Dari: -
Ke: -
Hasil (Bahasa Indonesia) 1: [Salinan]
Disalin!
- LC can be visualized as preview during its computation, enabling a direct feed-back for the user on what VRay is computing.

Disadvantages
- Like the IM, LC too depends on the point of view, and the GI is computed for the set point of view only.
- LC does not produce excellent results when BUMP effects are present. For this reason it is better use it with the IM or the QMC GI when detailed Bump effects are present.

236/p221
Among these four methods, which is the best one to use and for which kind of scenes it is better to use a method rather than another one? The answer is not universal, even for the same scene and the same lighting. Some methods are more useful than others, if we talk about static, dynamic and fixed renders. It all depend on what one wants to obtain.
Figure 3.102 Panel showing all the GI computation methods present in VRay.
In the previous image the panel managing the GI in VRay is shown. It is subdivided in two sections. Primary bounces and secondary bounces.
Primary bounces represent the first step in light diffusion. Once emitted from the light source, light travels through space. When it encounters in an object, is it involved in various process: diffusion, refraction, reflection etc… in the drop down menu of primary bounces it is possible to choose the GI engine. It is possible to choose between the four methods available in VRay. In the next scene one can notice how both the sun and the sky contribute to the scene’s lighting. The sun is easily reproducible in 3ds max thanks to a normal direct light, while in VRay a special tool is available for the sky: VRay Environment, to be found in the renderer panel of VRay. Further on it will be explained in detail. For the moment, just imagine it as a way of simulatin the sky.
Figure 3.103 Scheme representing primary bounces.
Once the rays have collided once, VRay continues the computation of the path followed by the luminous flow thanks to a seconf rendering engine. In this case three among the four computation methods can be chosen.
Figur 3.104 Scheme representing secondary bounces.

237/p222
It is possible to light up parts of the scene not directly lit by the sources. VRay allows one to choose the system to be used for primary and secondary bounces. As one can see by the parameters present in the rollout VRay: Indirect illumination, it is possible to set their intensity, setting the multiplier. So, it is possible to control light as never before!
Figure 3.102 The Panel VRay: Indirect illumination (GI)
Parameters
On – it activates and deactivates the GI. When deactivated, VRay uses only the primary bounces for the scene’s illumination.
Figure 3.106 Bird-eye view and prospective view of the scene. It is composed by several snooker balls and a supporting plane. Illumination is generated by two VRayLights and by the Environment.
Figure 3.107 On the left image the scene is illuminated by the two VRayLights, because the GI is deactivated, while on the right one the skylight effect is added. Times are considerably increased, but so is image quality and photorealism too.
GI caustics
GI caustics represents and controls the light when it is reflected diffusely, reflective or refractive specularly.
Reflective GI caustic – this parameter allows indirect light, therefore the GI, to be reflected by objects like mirrors and reflective surfaces. It is turned off by default, for reflective GI contribution to the final illumination of the scene is usually low, other than stretching out rendering times and often introducing small flaws and noise. To be noticed: reflective GI caustics do not represent caustics, which are effects due to the collision of direct light onto specular objects.

238/p223
Figure 3.108 Scene rendered with the QMC+LC method with 25 Subdivs for QMC and 1.500 for the LC. The room is lit by the skylight only. In both scenes the parameters are the same, except for the activation of the reflective GI caustic parameter. The activation of this parameter would have been negligible with a completely opaque floor.

In the test shown two things must be noticed. The scene appears much more luminous by activating the reflective GI caustic parameter. This happens because the floor is a colored mirror and reflect the indirect light. Therefore in this case indirect illumination affects global illumination considerably, because the floor has a wide extension. In fact, as marked by the ceiling area, the reflection of indirect like produces new light, which in turn produces visible shadows on the ceiling. A real example of the GI reflection phenomenon might be illumination due to water flow. The solar light bouncing on the river’s survace, lights the underside of a bridge. Reflective GI caustic, which should in theory always be activated can produce artefacts. This happens because it computation requires many samples. If the number of subdivision is not enough, some colored dots might appear in some areas of the render instead of the reflective GI. In any case the best advice is to always keep it turned off, as its contribution of indirect illumination to the GI of the entire scene is often hardly noticeable. The second effect due to the activation of the parameter Reflective GI caustic is the light brown coloring of the whole scene, due to the floor reflection, in slanf known as Color Bleeding.

Refractive GI caustic – the activation of this parameter allows indirect light to pass through transparent objects. B aware that refractive GI caustic and caustics are not the same thing. The latter represent how the direct light passes through matter, whereas Refractive GI caustics represent how indirect light does the same.
Refractive GI caustic is to be kept active at all times; in fact it is turned on by default. In this way, for example, that skylight or any other light are able to pass through transparent surfaces, such as windows or a glass.
Figure 3.109 Exterior image rendered with VRaySun+VRaySky of VRay 1.49.03 QMC + LC. The GI does not pass through glasses if refractive GI caustic is deactivated, while the direct rays do it. Refractive GI caustics affects indirect light only. Deactivating it, the rooms of the building are in any case lit by the direct sun light, which is not able to filter through the transparent glass. Only if the refractive GI caustics are activated the GI is able to pass through the glass/windows.
Post-processing
The following series of parameter allows one to modify indirest illumination, meaning the GI alone before the final rendering calculation. As will be seen shortly, once IM, LC or PM has been saved, VRay allows one to modify contrast and saturation without having to re-calculate the whole GI. By changing the post-processing parameters it is possible to alter the GI, although the default values are the only which assure physically accurate results. The purpose of these parameters is to give the use greater control over the GI. Techinically speaking, these parameters permit GI corrections which are typical of image processing programs.

Saturation – this parameters controls GI saturation. If the calue is set to 0.0, this means that Global Illumination does not have any color, thus eliminating any type of color beleeding effect. Value 1.0 means that GI colors will remain unaltered. Values greater that 1 will increase contrast of GI and color bleeding.

239/p224
Contrast – this parameter, which acts together with contrast base, controls the GI contrast. With value at 0.01 GI will not have any contrast. At 1.0 GI will remain unaltered. Values greater than 1.0 will increase contrast.
Contrast base – this parameter controls the quantity of contrast applied by the contrast parameter. In other words it fixes the GI value which will not be modified during the calculating of contrast. The greater the value, the more GI will be influenced by the Contrast parameter.

Figure 3.110 summary scheme for Contrast and Contrast base parameters. The image which is hightlighted in purple shows a render with default parameters.

Save maps per frame – if this activated and the auto save function is being used, VRay saves GI maps (Irradiance Map, photon map, caustics and light cache) at the end of the rendering process of each frame, take note that VRay always saves the maps overwriting the same file. If it is disabled, VRay will create the various maps once only, at the end of rendering (from v1.5 RC3 this option is no longer available).

Primary Bounces
Multiplier – this parameter fixes the amount of direct light which contributes in illumination the scene. Value 1.0 will produce images which are physically correct and accurate. For correct results, it is advisable to leave Multiplier unaltered. Inside VRay there are many other options which allow one to change the amount of light within a given scene. Use this multiplier as a last resort.

Primary GI engine – with this pull-down meny, it is possible to specify which of the four available methods in VRay to use for the calculation of Primary diffuse Bounces.
- Irradiance amap (IM)
Sedang diterjemahkan, harap tunggu..
Hasil (Bahasa Indonesia) 2:[Salinan]
Disalin!
- LC dapat divisualisasikan sebagai pratinjau selama perhitungan nya, memungkinkan umpan balik langsung bagi pengguna tentang apa VRay adalah komputasi. Kekurangan - Seperti IM, LC juga tergantung pada sudut pandang, dan GI dihitung untuk set point pandang saja. - LC tidak menghasilkan hasil yang sangat baik ketika efek BUMP hadir. Untuk alasan ini lebih baik menggunakannya dengan IM atau QMC GI ketika efek Bump rinci hadir. 236 / p221 antara keempat metode tersebut, yang merupakan yang terbaik untuk digunakan dan untuk yang jenis adegan itu lebih baik menggunakan metode daripada yang lain? Jawabannya adalah tidak universal, bahkan untuk adegan yang sama dan pencahayaan yang sama. Beberapa metode yang lebih berguna daripada yang lain, jika kita berbicara tentang statis, dinamis dan tetap membuat. Itu semua tergantung pada apa yang ingin diperoleh. Gambar 3,102 Panel menampilkan semua metode perhitungan GI hadir di VRay. Dalam gambar sebelumnya panel mengelola GI di VRay ditampilkan. Hal ini dibagi dalam dua bagian. Bouncing primer dan sekunder bounce. bouncing primer merupakan langkah pertama dalam difusi cahaya. Setelah dipancarkan dari sumber cahaya, cahaya perjalanan melalui ruang. Ketika bertemu dalam suatu objek, apakah terlibat dalam berbagai proses: difusi, refraksi, refleksi dll ... dalam menu drop bounce utama turun adalah mungkin untuk memilih mesin GI. Hal ini dimungkinkan untuk memilih antara empat metode yang tersedia di VRay. Dalam adegan berikutnya kita dapat melihat bagaimana kedua matahari dan langit berkontribusi terhadap pencahayaan adegan. Matahari mudah direproduksi dalam 3ds max berkat cahaya langsung normal, sedangkan di VRay alat khusus yang tersedia untuk langit: VRay Lingkungan, dapat ditemukan dalam panel penyaji dari VRay. Selanjutnya di atasnya akan dijelaskan secara rinci. Untuk saat ini, bayangkan itu sebagai cara simulatin langit. Gambar Skema 3,103 mewakili bounce utama. Setelah sinar telah bertabrakan sekali, VRay melanjutkan perhitungan jalur diikuti oleh aliran berkat bercahaya ke mesin rendering seconf. Dalam hal ini tiga di antara empat metode perhitungan dapat dipilih. Figur Skema 3,104 mewakili bounce sekunder. 237 / p222 Hal ini dimungkinkan untuk menerangi bagian dari adegan tidak langsung diterangi oleh sumber. VRay memungkinkan seseorang untuk memilih sistem yang akan digunakan untuk bouncing primer dan sekunder. Seperti yang dapat dilihat oleh parameter hadir dalam peluncuran VRay: pencahayaan tidak langsung, adalah mungkin untuk mengatur intensitas mereka, pengaturan multiplier. Jadi, adalah mungkin untuk mengontrol cahaya yang belum pernah sebelumnya! Gambar 3,102 Panel VRay: pencahayaan tidak langsung (GI) Parameter On - akan mengaktifkan dan menonaktifkan GI. Ketika dinonaktifkan, VRay hanya menggunakan bouncing utama untuk penerangan adegan itu. Gambar 3,106 tampilan Burung-mata dan calon pandangan TKP. Hal ini disusun oleh beberapa bola snooker dan pesawat pendukung. Iluminasi yang dihasilkan oleh dua VRayLights dan dengan Lingkungan. Gambar 3.107 Pada gambar sebelah kiri adegan diterangi oleh dua VRayLights, karena GI yang dinonaktifkan, sementara di yang tepat efek skylight ditambahkan. Kali ini meningkat pesat, tapi begitu kualitas gambar dan photorealism juga. GI caustic GI caustic mewakili dan mengontrol cahaya ketika tercermin difus, reflektif atau bias specularly. GI Reflektif kaustik - parameter ini memungkinkan cahaya tidak langsung, oleh karena itu GI, untuk menjadi tercermin dari benda-benda seperti cermin dan permukaan reflektif. Dimatikan secara default, untuk kontribusi GI reflektif untuk penerangan akhir adegan biasanya rendah, selain merentangkan render kali dan sering memperkenalkan kekurangan kecil dan kebisingan. Untuk diperhatikan: caustic GI reflektif tidak mewakili caustic, yang efek karena tabrakan cahaya langsung ke objek specular. 238 / p223 Gambar 3,108 Adegan diberikan dengan metode QMC + LC dengan 25 subdivs untuk QMC dan 1.500 untuk LC. Ruangan ini diterangi oleh langit saja. Dalam kedua adegan parameter yang sama, kecuali untuk aktivasi parameter kaustik GI reflektif. Aktivasi parameter ini akan menjadi diabaikan dengan lantai benar-benar buram. Dalam tes menunjukkan dua hal yang harus diperhatikan. Adegan muncul jauh lebih bercahaya dengan mengaktifkan GI parameter kaustik reflektif. Hal ini terjadi karena lantai adalah cermin berwarna dan memantulkan cahaya tidak langsung. Oleh karena itu dalam hal ini pencahayaan tidak langsung mempengaruhi iluminasi global jauh, karena lantai memiliki ekstensi yang luas. Bahkan, seperti yang ditandai dengan daerah langit-langit, refleksi langsung seperti menghasilkan cahaya baru, yang pada gilirannya menghasilkan bayangan yang terlihat di langit-langit. Sebuah contoh nyata dari fenomena refleksi GI mungkin penerangan karena aliran air. Cahaya matahari memantul di survace sungai, lampu bagian bawah jembatan. GI reflektif kaustik, yang seharusnya dalam teori selalu diaktifkan dapat menghasilkan artefak. Hal ini terjadi karena perhitungan membutuhkan banyak sampel. Jika jumlah subdivisi tidak cukup, beberapa titik berwarna mungkin muncul di beberapa wilayah membuat bukan GI reflektif. Dalam hal apapun saran terbaik adalah untuk selalu menjaga dimatikan, karena kontribusinya penerangan tidak langsung ke GI dari seluruh adegan sering hampir tidak terlihat. Efek kedua karena aktivasi parameter Reflektif GI kaustik adalah pewarnaan coklat muda dari seluruh adegan, karena refleksi lantai, di slanf dikenal sebagai Color Pendarahan. GI bias kaustik - aktivasi parameter ini memungkinkan cahaya tidak langsung untuk lulus melalui benda-benda transparan. B sadar bahwa GI bias kaustik dan caustic bukan hal yang sama. Yang terakhir mewakili bagaimana cahaya langsung melewati materi, sedangkan caustic GI bias mewakili bagaimana cahaya tidak langsung melakukan hal yang sama. GI bias kaustik harus dijaga aktif setiap saat; sebenarnya itu diaktifkan secara default. Dengan cara ini, misalnya, bahwa skylight atau cahaya lain dapat melewati permukaan transparan, seperti jendela atau gelas. Gambar 3,109 image Exterior diberikan dengan VRaySun + VRaySky dari VRay 1.49.03 QMC + LC. GI tidak melewati kacamata jika bias GI kaustik dinonaktifkan, sedangkan sinar langsung melakukannya. Bias GI caustic hanya mempengaruhi cahaya tidak langsung. Menonaktifkan itu, kamar bangunan yang dalam hal apapun diterangi oleh cahaya matahari langsung, yang tidak dapat menyaring melalui kaca transparan. Hanya jika GI caustic diaktifkan GI mampu melewati kaca / jendela. Pasca pengolahan Seri berikut parameter memungkinkan seseorang untuk memodifikasi indirest pencahayaan, yang berarti GI saja sebelum perhitungan rendering akhir. Seperti yang akan terlihat segera, setelah IM, LC atau PM telah disimpan, VRay memungkinkan seseorang untuk memodifikasi kontras dan saturasi tanpa harus menghitung ulang seluruh GI. Dengan mengubah parameter pengolahan pasca adalah mungkin untuk mengubah GI, meskipun nilai default adalah satu-satunya yang menjamin fisik hasil yang akurat. Tujuan dari parameter ini adalah untuk memberikan penggunaan kontrol yang lebih besar GI. Techinically berbicara, parameter ini memungkinkan koreksi GI yang khas dari program pengolah gambar. Saturation - parameter ini mengontrol saturasi GI. Jika calue diatur ke 0,0, ini berarti bahwa Global Illumination tidak memiliki warna apapun, sehingga menghilangkan semua jenis efek warna beleeding. Nilai 1.0 berarti bahwa warna GI akan tetap tidak berubah. Nilai yang lebih besar bahwa 1 akan meningkatkan kontras dan warna GI perdarahan. 239 / p224 Kontras - parameter ini, yang bertindak bersama-sama dengan basis Sebaliknya, mengontrol kontras GI. Dengan nilai 0,01 GI tidak akan memiliki kontras apapun. Pada 1,0 GI akan tetap tidak berubah. Nilai lebih besar dari 1,0 akan meningkatkan kontras. basis Kontras - parameter ini mengontrol jumlah kontras yang diterapkan oleh parameter kontras. Dengan kata lain itu perbaikan nilai GI yang tidak akan diubah selama perhitungan kontras. Semakin besar nilai, semakin GI akan dipengaruhi oleh parameter Kontras. Gambar 3.110 Skema ringkasan untuk Kontras dan basis Kontras parameter. Gambar yang hightlighted ungu menunjukkan render dengan parameter standar. Simpan peta per frame - jika ini diaktifkan dan auto save fungsi yang digunakan, VRay menghemat GI peta (Irradiance Peta, peta foton, caustic dan cache cahaya) pada akhir dari proses rendering setiap frame, perhatikan bahwa VRay selalu menyimpan peta Timpa file yang sama. Jika dinonaktifkan, VRay akan menciptakan berbagai peta hanya sekali, pada akhir render (dari v1.5 RC3 opsi ini tidak lagi tersedia). Primer Bouncing Multiplier - parameter ini perbaikan jumlah cahaya langsung yang memberikan kontribusi dalam iluminasi tempat kejadian. Nilai 1.0 akan menghasilkan gambar yang secara fisik benar dan akurat. Untuk hasil yang benar, disarankan untuk meninggalkan Multiplier berubah. Di dalam VRay ada banyak pilihan lain yang memungkinkan seseorang untuk mengubah jumlah cahaya dalam adegan tertentu. Gunakan multiplier ini sebagai jalan terakhir. mesin GI Primer - dengan ini meny pull-down, adalah mungkin untuk menentukan mana dari empat metode yang tersedia di VRay digunakan untuk perhitungan Bouncing menyebar Primer. - Irradiance AMAP (IM)



















































Sedang diterjemahkan, harap tunggu..
 
Bahasa lainnya
Dukungan alat penerjemahan: Afrikans, Albania, Amhara, Arab, Armenia, Azerbaijan, Bahasa Indonesia, Basque, Belanda, Belarussia, Bengali, Bosnia, Bulgaria, Burma, Cebuano, Ceko, Chichewa, China, Cina Tradisional, Denmark, Deteksi bahasa, Esperanto, Estonia, Farsi, Finlandia, Frisia, Gaelig, Gaelik Skotlandia, Galisia, Georgia, Gujarati, Hausa, Hawaii, Hindi, Hmong, Ibrani, Igbo, Inggris, Islan, Italia, Jawa, Jepang, Jerman, Kannada, Katala, Kazak, Khmer, Kinyarwanda, Kirghiz, Klingon, Korea, Korsika, Kreol Haiti, Kroat, Kurdi, Laos, Latin, Latvia, Lituania, Luksemburg, Magyar, Makedonia, Malagasi, Malayalam, Malta, Maori, Marathi, Melayu, Mongol, Nepal, Norsk, Odia (Oriya), Pashto, Polandia, Portugis, Prancis, Punjabi, Rumania, Rusia, Samoa, Serb, Sesotho, Shona, Sindhi, Sinhala, Slovakia, Slovenia, Somali, Spanyol, Sunda, Swahili, Swensk, Tagalog, Tajik, Tamil, Tatar, Telugu, Thai, Turki, Turkmen, Ukraina, Urdu, Uyghur, Uzbek, Vietnam, Wales, Xhosa, Yiddi, Yoruba, Yunani, Zulu, Bahasa terjemahan.

Copyright ©2024 I Love Translation. All reserved.

E-mail: