compounds such as nitroarenes [25,26], aryl chlorides [27,28],aldehyde terjemahan - compounds such as nitroarenes [25,26], aryl chlorides [27,28],aldehyde Bahasa Indonesia Bagaimana mengatakan

compounds such as nitroarenes [25,2

compounds such as nitroarenes [25,26], aryl chlorides [27,28],
aldehydes [29], biomass-derived glycolides [30], bio-oil [31], and
carbon dioxide [32,33]. To regenerate oxidized metals and metal
oxides, the following processes have been proposed as renewable
energy sources: reducing gases from biomass gasification [34],
biomass-derived char [35,36], and solar thermal energy [31,37].
Thus, metal/metal-oxide water systems used as in situ hydrogen
donors can potentially be used for eco-friendly chemical synthesis
via hydrogenation and hydrogenolysis reactions. The zerovalent
iron (Fe) and water (H2O) system is particularly valuable in this
regard, because Fe is an abundant and cheap resource that can be
used to produce H2 in accordance with Reactions (1) and (2):
Fe (s) + H2O (g) → FeO (s) + H2 (g) (1)
3FeO (s) + H2O (g) → Fe3O4 (s) + H2 (g) (2)
Here, (s) and (g) represent solids and gases, respectively. The use
of H2 derived from nanoscale Fe and H2O has been investigated for
removing contaminants such as p-nitrophenol [38], trichloroethylene
[39], hexachlorobenzene [40], and 4-chlorophenol [41] from
water via catalytic hydrogenation; however, it has not yet been
applied to the production of useful chemicals.
Fatty alcohols derived from renewable resources such as vegetable
oils are an industrially important feedstock for the synthesis
of surfactants and plasticizers. Fatty alcohols are produced by the
hydrogenation of fatty acid esters, which are obtained by transesterification
of triglycerides using methanol or fatty acids from
the hydrolysis of fats [42]. During the hydrogenation of fatty acids
and esters, copper–chromite-based catalysts are commonly used
at high temperatures (250–300 ◦C) and pressures (20–30 MPa). To
date, a large number of heterogeneous catalysts have been investigated
based on noble metals (Ru [43–47], Rh [48], and Pt [49]) or
transition metals (Cu [9,50] and Co [51–53]), and have been shown
to exhibit high activity under mild conditions.
In this work, we employed Fe and H2O (Fe/H2O) as an in situ
hydrogen donor for the transformation of methyl laurate into
lauryl alcohol over a Ru–Sn–Mo/C catalyst. The performance of
Ru–Sn–Mo/C with this Fe/H2O system was compared to a conventional
reaction system that uses pressurized hydrogen.
2. Experimental
2.1. Catalyst preparation
The Ru–Sn–Mo/C catalyst was prepared by a conventional
impregnation method using aqueous solutions of RuCl3·nH2O
(41.1%, Ru content, Wako Pure Chemical Industries, Ltd.),
SnCl4·5H2O (100.1%, Wako Pure Chemical Industries, Ltd.), and
(NH4)6Mo7O24·4H2O (100.7%,Wako Pure Chemical Industries, Ltd.)
with activated charcoal (Sigma-Aldrich, Norit SX Ultra). Typically,
316 mg of RuCl3·nH2O, 222 mg of SnCl4·5H2O, and 23 mg of
(NH4)6Mo7O24·4H2O were placed into an evaporating dish, and 2 g
of ultrapure water was added to dissolve the salts. After adding
857 mg of activated charcoal, the mixture was dried in a water
bath at 90 ◦C while stirring. The resulting impregnated catalyst
was vacuum-dried overnight at 70 ◦C and the resulting catalyst was
reduced at 350 ◦C for 1 h under hydrogen (99.999%) at a flow rate
of 50 cm3 min−1.
Oxidized-Fe sample was prepared from 60 to 80 nm Fe particles
(99.9%, 1564 mg, product number: NM-0029-UP, Ionic Liquids
Technologies), H2O (1 g), and tetradecane (99.7%, 40 mL,Wako Pure
Chemical Industries, Ltd.) in a 100 mL Hastelloy C high-pressure
reactor (OM Lab-Tech, MMJ-100). For this, the reactor was first
purged four times with nitrogen, and then heated to 270 ◦C and
held atthis temperature for 24 h at a stirring rate of 1000 rpm. After
cooling to room temperature, the oxidized iron was separated by
filtration, washed with acetone, and then vacuum-dried overnight
at 70 ◦C.
2.2. Characterization
To determine the crystalline phase of the catalyst, X-ray powder
diffraction (XRD) analyses were performed using a Rigaku SmartLab
diffractometer with CuK radiation. X-ray fluorescence (XRF)
analyses were also performed to determine composition of the
fresh and spent catalyst using a Rigaku ZSX Primus II apparatus
with RhK radiation. A Brunauer–Emmett–Teller (BET) analysis
was conducted to determine the specific surface area of the catalyst;
this was accomplished by using N2 adsorption at −196 ◦C
with a BEL Japan Bellsorp-mini II instrument. The surface chemical
states of the Ru–Sn–Mo/C were evaluated by X-ray photoelectron
spectroscopy (XPS) analyses (JPS-9000MX, JEOL) with a MgK excitation
source. All binding energy values in the XPS spectra were
referenced to the C 1 s line at 285.0 eV.
Temperature programmed desorption (NH3-TPD and CO2-TPD)
experiments were carried out in a flow apparatus with helium
as the carrier gas using a MicrotracBEL BELCAT-A. Prior to these
experiments, the samples (0.2 g) were pretreated for 1 h at 300 ◦C
under He (30 cm3 min−1) to remove the adsorbate. Once the samples
were cooled to 100 ◦C, probe mo
0/5000
Dari: -
Ke: -
Hasil (Bahasa Indonesia) 1: [Salinan]
Disalin!
senyawa seperti nitroarenes [25,26], [27,28], Aril kloridaAldehida [29], berasal dari biomassa glycolides [30] [31], minyak bio dankarbon dioksida [32,33]. Untuk menumbuhkan teroksidasi logam dan logamoksida, proses berikut telah diusulkan sebagai terbarukansumber energi: mengurangi gas dari gasifikasi biomassa [34],berasal dari biomassa char [35, 36], dan energi panas matahari [31,37].Dengan demikian, logam/logam-oksida air sistem digunakan seperti di situ hidrogenDonatur dapat berpotensi digunakan untuk sintesis kimia ramahmelalui reaksi hidrogenasi dan hydrogenolysis. Zerovalentbesi (Fe) dan air (H2O) sistem sangat berharga dalam hal inimenganggap, karena Fe adalah sumber yang melimpah dan murah yang dapatdigunakan untuk memproduksi H2 sesuai dengan reaksi (1) dan (2):FE (s) + H2O (g) → FeO (s) + H2 (g) (1)3FeO (s) + H2O (g) → Fe3O4 (s) + H2 (g) (2)Di sini, (s) dan (g) mewakili padat dan gas, masing-masing. Penggunaandari H2 berasal dari Nanoscale menakjubkan Fe dan H2O telah diselidiki untukmenghilangkan kontaminan seperti p-nitrofenol [38], Trichloroethyldari Timur ke Timurlaut[39], hexachlorobenzene [40], dan 4-chlorophenol [41] dariair melalui hidrogenasi katalitik; Namun, itu belumditerapkan untuk produksi bahan kimia berguna.Fatty alkohol berasal dari sumber daya terbarukan seperti sayurminyak adalah bahan baku industri penting untuk sintesissurfaktan dan plastik. Fatty alkohol yang diproduksi olehhidrogenasi Ester asam lemak, yang diperoleh oleh transesterifikasitrigliserida menggunakan metanol atau asam lemak darihidrolisis dari lemak [42]. Selama proses hidrogenasi asam lemakdan Ester, tembaga-krom berbasis katalis yang digunakanpada suhu tinggi (250-300 ◦C) dan tekanan (20-30 MPa). Untuktanggal, sejumlah besar heterogen katalis telah menyelidikiBerdasarkan logam mulia (Ru [43 – 47], Rh [48], dan Pt [49]) atauLogam transisi (Cu [9,50] dan Co [51 – 53]), dan telah ditunjukkanmenunjukkan aktivitas yang tinggi dalam keadaan sejuk.Dalam karya ini, kami bekerja Fe dan H2O (Fe/H2O) sebagai di situhidrogen donor untuk transformasi metil laurate kelauryl alkohol selama katalis Ru-Sn-Mo/C. KinerjaRu-Sn-Mo/C dengan sistem Fe H2O ini dibandingkan dengan konvensionalsistem reaksi yang menggunakan hidrogen bertekanan.2. eksperimental2.1. katalis persiapanKatalis Ru-Sn-Mo/C disiapkan oleh konvensionalImpregnasi metode menggunakan larutan RuCl3·nH2O(41,1%, Ru konten, Wako murni Chemical Industries, Ltd),SnCl4·5H2O (100,1%, Wako murni Chemical Industries, Ltd), dan6Mo7O24·4H2O (NH4) (100.7%,Wako murni Chemical Industries, Ltd)dengan arang (Sigma Aldrich, Norit SX Ultra). Biasanya,316 mg RuCl3·nH2O, 222 mg SnCl4·5H2O dan 23 mg6Mo7O24·4H2O (NH4) ditempatkan ke dalam piring evaporasi, dan 2 gof ultrapure water was added to dissolve the salts. After adding857 mg of activated charcoal, the mixture was dried in a waterbath at 90 ◦C while stirring. The resulting impregnated catalystwas vacuum-dried overnight at 70 ◦C and the resulting catalyst wasreduced at 350 ◦C for 1 h under hydrogen (99.999%) at a flow rateof 50 cm3 min−1.Oxidized-Fe sample was prepared from 60 to 80 nm Fe particles(99.9%, 1564 mg, product number: NM-0029-UP, Ionic LiquidsTechnologies), H2O (1 g), and tetradecane (99.7%, 40 mL,Wako PureChemical Industries, Ltd.) in a 100 mL Hastelloy C high-pressurereactor (OM Lab-Tech, MMJ-100). For this, the reactor was firstpurged four times with nitrogen, and then heated to 270 ◦C andheld atthis temperature for 24 h at a stirring rate of 1000 rpm. Aftercooling to room temperature, the oxidized iron was separated byfiltration, washed with acetone, and then vacuum-dried overnightat 70 ◦C.2.2. CharacterizationTo determine the crystalline phase of the catalyst, X-ray powderdiffraction (XRD) analyses were performed using a Rigaku SmartLabdiffractometer with CuK radiation. X-ray fluorescence (XRF)analyses were also performed to determine composition of thefresh and spent catalyst using a Rigaku ZSX Primus II apparatuswith RhK radiation. A Brunauer–Emmett–Teller (BET) analysiswas conducted to determine the specific surface area of the catalyst;this was accomplished by using N2 adsorption at −196 ◦Cdengan instrumen BEL Jepang Bellsorp-mini II. Kimia permukaanSerikat Ru-Sn-Mo/C dievaluasi oleh X-ray teknikspektroskopi analisis (JPS-9000MX, JEOL) dengan eksitasi MgKsumber. Semua energi pengikatan nilai pada spektrum XPS yangdireferensikan untuk garis s C 1 di 285.0 eV.Suhu diprogram desorption (NH3-TPD dan CO2-TPD)eksperimen dilakukan di aparat aliran dengan heliumsebagai gas pembawa menggunakan MicrotracBEL BELCAT-A. Sebelum inipercobaan, sampel (0.2 g) yang pretreated untuk 1 h di 300 ◦Cdi bawah dia (30 cm3 min−1) untuk menghapus adsorbate. Sekali sampelyang didinginkan hingga 100 ◦C, probe mo
Sedang diterjemahkan, harap tunggu..
 
Bahasa lainnya
Dukungan alat penerjemahan: Afrikans, Albania, Amhara, Arab, Armenia, Azerbaijan, Bahasa Indonesia, Basque, Belanda, Belarussia, Bengali, Bosnia, Bulgaria, Burma, Cebuano, Ceko, Chichewa, China, Cina Tradisional, Denmark, Deteksi bahasa, Esperanto, Estonia, Farsi, Finlandia, Frisia, Gaelig, Gaelik Skotlandia, Galisia, Georgia, Gujarati, Hausa, Hawaii, Hindi, Hmong, Ibrani, Igbo, Inggris, Islan, Italia, Jawa, Jepang, Jerman, Kannada, Katala, Kazak, Khmer, Kinyarwanda, Kirghiz, Klingon, Korea, Korsika, Kreol Haiti, Kroat, Kurdi, Laos, Latin, Latvia, Lituania, Luksemburg, Magyar, Makedonia, Malagasi, Malayalam, Malta, Maori, Marathi, Melayu, Mongol, Nepal, Norsk, Odia (Oriya), Pashto, Polandia, Portugis, Prancis, Punjabi, Rumania, Rusia, Samoa, Serb, Sesotho, Shona, Sindhi, Sinhala, Slovakia, Slovenia, Somali, Spanyol, Sunda, Swahili, Swensk, Tagalog, Tajik, Tamil, Tatar, Telugu, Thai, Turki, Turkmen, Ukraina, Urdu, Uyghur, Uzbek, Vietnam, Wales, Xhosa, Yiddi, Yoruba, Yunani, Zulu, Bahasa terjemahan.

Copyright ©2025 I Love Translation. All reserved.

E-mail: