three-dimensional configuration necessary for catalytic activity (Zhao, terjemahan - three-dimensional configuration necessary for catalytic activity (Zhao, Bahasa Indonesia Bagaimana mengatakan

three-dimensional configuration nece

three-dimensional configuration necessary for catalytic activity (Zhao, Lu, Bie, Lu, & Liu, 2007). Since free type PLA1 is in a form of aqueous solution, the activity of PLA1 could be closely related to essential water. Another explanation is that water facilitates the acidolysis reaction by promoting hydrolysis. Since hydrolysis of PC should precede esterification of fatty acid, water can contribute in the hydrolysis reaction as a substrate. Similar effects of adding water to the reaction mixture have been evaluated previously by different authors. Haraldsson and Thorarensen (1999) have reported that 5% water addition resulted in the highest incorporation of EPA into PC using PLA1 as a biocatalyst, but also gave the highest degree of hydrolysis as a side reaction. Vikbjerg et al. (2007) have reported that greater extents of
acidolysis of PC with caprylic acid at water contents of 2–4% with Lipozyme TL IM (from T. lanuginosus). In the present study, water content of 1.0% or higher showed the highest incorporation of n3 PUFA (33.9 mol%) with a 30.9 mol% yield. Therefore, 1.0% water was selected as optimum for further experimentation.
3.2.2. Temperature
In general, an increase in the reaction temperature of enzyme- catalyzed reactions results in increased reaction rates, according to Arrhenius’s law and barring enzyme denaturation. A higher temperature favours higher yields for endothermic reactions owing to a shift in thermodynamic equilibrium. A reaction’s optimal temperature should be determined on an individual basis and based on the melting point of the substrates and products (Kim & Kim, 2000; Virto & Adlercreutz, 2000; Virto, Svensson, & Adlercreutz, 1999). In this study, temperatures ranged from 35 to 65 C were tested for the modification of PC with n3 PUFA, because at less than 35 C, the substrate mixture could not be stirred sufficiently due to high viscosity of the mixture. For these trials, water content, enzyme loading and molar ratio of PC to fatty acid were maintained at 1.0% (based on total substrate weight), 10% (based on total substrate weight) and 1:8, respectively. The effect of temperature on the acidolysis reaction is shown in Fig. 3. During the first 6 h of reaction, the incorporation of n3 PUFA into PC increased significantly when the temperature was increased from 35 to 55 C. However, when the temperature was further increased from 55 to 65 C, the incorporation of n3 PUFA into PC decreased in the same time frame. Moreover, at 55 C, the maximum incorporation of ca. 32.0 mol% was achieved after only 6 h. Meanwhile, at all temperatures tested, no significant differences in the incorporation of n3 PUFA were observed after 24 h. A slightly higher yield of PC was obtained with the lower temperatures, but there were no significant differences observed in the temperature range tested. In general, enzyme stability is influenced by temperature; a high temperature will greatly reduce the enzyme stability and its half-life through denaturation. A higher temperature will also increase the lipid oxidation rate, especially if PUFAs are used as acyl donors (Kim, Lee, Oh, & Kim, 2001; Xu, 2000). In a previous study from our research group, the highest incorporation was achieved at 55 C when a free type PLA1 was used (Kim, Garcia, & Hill, 2007; Peng, Xu, Mu, Høy, & Adler-Nissen, 2002). In addition, Peng et al. (2002) have reported a maximal observed incorporation
at 57.5 C in batch reactions for the same enzyme and substrate. These previous reports validate the optimal temperature determined in the present study. Hence, 55 C was selected as the optimal
temperature and used in subsequent experimental trials, representing the maximum incorporation with the fastest reaction time achieved at this temperature.
3.2.3. Enzyme loading
Enzyme loadings ranging from 2.5% to 30% (based on total substrate weight) were tested for the modification of PC with n3
0/5000
Dari: -
Ke: -
Hasil (Bahasa Indonesia) 1: [Salinan]
Disalin!
three-dimensional configuration necessary for catalytic activity (Zhao, Lu, Bie, Lu, & Liu, 2007). Since free type PLA1 is in a form of aqueous solution, the activity of PLA1 could be closely related to essential water. Another explanation is that water facilitates the acidolysis reaction by promoting hydrolysis. Since hydrolysis of PC should precede esterification of fatty acid, water can contribute in the hydrolysis reaction as a substrate. Similar effects of adding water to the reaction mixture have been evaluated previously by different authors. Haraldsson and Thorarensen (1999) have reported that 5% water addition resulted in the highest incorporation of EPA into PC using PLA1 as a biocatalyst, but also gave the highest degree of hydrolysis as a side reaction. Vikbjerg et al. (2007) have reported that greater extents ofacidolysis of PC with caprylic acid at water contents of 2–4% with Lipozyme TL IM (from T. lanuginosus). In the present study, water content of 1.0% or higher showed the highest incorporation of n3 PUFA (33.9 mol%) with a 30.9 mol% yield. Therefore, 1.0% water was selected as optimum for further experimentation.3.2.2. TemperatureIn general, an increase in the reaction temperature of enzyme- catalyzed reactions results in increased reaction rates, according to Arrhenius’s law and barring enzyme denaturation. A higher temperature favours higher yields for endothermic reactions owing to a shift in thermodynamic equilibrium. A reaction’s optimal temperature should be determined on an individual basis and based on the melting point of the substrates and products (Kim & Kim, 2000; Virto & Adlercreutz, 2000; Virto, Svensson, & Adlercreutz, 1999). In this study, temperatures ranged from 35 to 65 C were tested for the modification of PC with n3 PUFA, because at less than 35 C, the substrate mixture could not be stirred sufficiently due to high viscosity of the mixture. For these trials, water content, enzyme loading and molar ratio of PC to fatty acid were maintained at 1.0% (based on total substrate weight), 10% (based on total substrate weight) and 1:8, respectively. The effect of temperature on the acidolysis reaction is shown in Fig. 3. During the first 6 h of reaction, the incorporation of n3 PUFA into PC increased significantly when the temperature was increased from 35 to 55 C. However, when the temperature was further increased from 55 to 65 C, the incorporation of n3 PUFA into PC decreased in the same time frame. Moreover, at 55 C, the maximum incorporation of ca. 32.0 mol% was achieved after only 6 h. Meanwhile, at all temperatures tested, no significant differences in the incorporation of n3 PUFA were observed after 24 h. A slightly higher yield of PC was obtained with the lower temperatures, but there were no significant differences observed in the temperature range tested. In general, enzyme stability is influenced by temperature; a high temperature will greatly reduce the enzyme stability and its half-life through denaturation. A higher temperature will also increase the lipid oxidation rate, especially if PUFAs are used as acyl donors (Kim, Lee, Oh, & Kim, 2001; Xu, 2000). In a previous study from our research group, the highest incorporation was achieved at 55 C when a free type PLA1 was used (Kim, Garcia, & Hill, 2007; Peng, Xu, Mu, Høy, & Adler-Nissen, 2002). In addition, Peng et al. (2002) have reported a maximal observed incorporationat 57.5 C in batch reactions for the same enzyme and substrate. These previous reports validate the optimal temperature determined in the present study. Hence, 55 C was selected as the optimaltemperature and used in subsequent experimental trials, representing the maximum incorporation with the fastest reaction time achieved at this temperature.3.2.3. Enzyme loadingEnzyme loadings ranging from 2.5% to 30% (based on total substrate weight) were tested for the modification of PC with n3
Sedang diterjemahkan, harap tunggu..
Hasil (Bahasa Indonesia) 2:[Salinan]
Disalin!
tiga-dimensi con fi gurasi yang diperlukan untuk aktivitas katalitik (Zhao, Lu, Bie, Lu, & Liu, 2007). Sejak bebas jenis PLA1 dalam bentuk larutan berair, aktivitas PLA1 bisa erat terkait dengan air yang penting. Penjelasan lain adalah bahwa air memfasilitasi acidolysis reaksi dengan mempromosikan hidrolisis. Karena hidrolisis PC harus mendahului Esteri fi kasi asam lemak, air dapat berkontribusi dalam reaksi hidrolisis sebagai substrat. Efek serupa menambahkan air ke dalam campuran reaksi telah dievaluasi sebelumnya oleh penulis yang berbeda. Haraldsson dan Thorarensen (1999) melaporkan bahwa penambahan air 5% mengakibatkan penggabungan tertinggi EPA ke PC menggunakan PLA1 sebagai biokatalis, tetapi juga memberikan tingkat tertinggi hidrolisis sebagai reaksi samping. Vikbjerg et al. (2007) melaporkan bahwa luasan lebih dari
acidolysis PC dengan asam kaprilat pada kadar air 2-4% dengan Lipozyme TL IM (dari T. lanuginosus). Dalam penelitian ini, kadar air 1,0% atau lebih tinggi menunjukkan penggabungan tertinggi n? 3 PUFA (33,9 mol%) dengan 30,9 mol% yield. Oleh karena itu, 1,0% air terpilih sebagai optimum untuk eksperimen lebih lanjut.
3.2.2. Suhu
Secara umum, peningkatan suhu reaksi enzyme katalis hasil reaksi dalam laju reaksi meningkat, menurut hukum Arrhenius dan pembatasan denaturasi enzim. Suhu yang lebih tinggi nikmat hasil yang lebih tinggi untuk reaksi endotermik karena pergeseran kesetimbangan termodinamika. Suhu optimal Reaksi ini harus ditentukan secara individual dan berdasarkan titik leleh substrat dan produk (Kim & Kim, 2000; Virto & Adlercreutz, 2000; Virto, Svensson, & Adlercreutz, 1999). Dalam penelitian ini, suhu berkisar 35-65? C diuji untuk modi fi kasi dari PC dengan n? 3 PUFA, karena kurang dari 35? C, campuran substrat tidak bisa diaduk suf fi sien karena viskositas tinggi dari campuran. Untuk percobaan ini, kadar air, enzim bongkar perbandingan molar PC menjadi asam lemak yang dipertahankan pada 1,0% (berdasarkan total substrat berat), 10% (berdasarkan total substrat berat) dan 1: 8, masing-masing. Pengaruh suhu pada reaksi acidolysis ditunjukkan pada Gambar. 3. Selama pertama 6 jam reaksi, penggabungan n? 3 PUFA ke PC meningkat secara signifikan ketika suhu meningkat 35-55? C. Namun, saat suhu telah meningkat 55-65? C, penggabungan n? 3 PUFA ke PC menurun pada rentang waktu yang sama. Selain itu, pada 55? C, penggabungan maksimum ca. 32,0 mol% dicapai setelah hanya 6 jam. Sementara itu, di semua suhu diuji, tidak ada perbedaan yang signifikan dalam penggabungan n? 3 PUFA diamati setelah 24 jam. Sebuah hasil yang sedikit lebih tinggi dari PC diperoleh dengan suhu yang lebih rendah, tetapi tidak ada perbedaan yang signifikan diamati pada kisaran suhu diuji. Secara umum, stabilitas enzim dipengaruhi oleh suhu; suhu tinggi akan sangat mengurangi stabilitas enzim dan paruh melalui denaturasi. Suhu yang lebih tinggi juga akan meningkatkan tingkat oksidasi lipid, terutama jika PUFA digunakan sebagai donor asil (Kim, Lee, Oh, & Kim, 2001; Xu, 2000). Dalam studi sebelumnya dari kelompok riset kami, penggabungan tertinggi dicapai pada 55 C ketika jenis PLA1 bebas digunakan (Kim, Garcia, & Hill, 2007; Peng, Xu, Mu, Høy, & Adler-Nissen, 2002)? . Selain itu, Peng et al. (2002) telah melaporkan maksimal diamati penggabungan
pada 57,5? C dalam reaksi bets untuk enzim yang sama dan substrat. Laporan-laporan ini sebelumnya memvalidasi suhu optimal ditentukan dalam penelitian ini. Oleh karena itu, 55? C terpilih sebagai optimal
suhu dan digunakan dalam uji eksperimental berikutnya, mewakili penggabungan maksimal dengan waktu reaksi tercepat dicapai pada suhu ini.
3.2.3. Enzim memuat
enzim beban mulai dari 2,5% sampai 30% (berdasarkan total substrat berat) diuji untuk modi fi kasi dari PC dengan n? 3
Sedang diterjemahkan, harap tunggu..
 
Bahasa lainnya
Dukungan alat penerjemahan: Afrikans, Albania, Amhara, Arab, Armenia, Azerbaijan, Bahasa Indonesia, Basque, Belanda, Belarussia, Bengali, Bosnia, Bulgaria, Burma, Cebuano, Ceko, Chichewa, China, Cina Tradisional, Denmark, Deteksi bahasa, Esperanto, Estonia, Farsi, Finlandia, Frisia, Gaelig, Gaelik Skotlandia, Galisia, Georgia, Gujarati, Hausa, Hawaii, Hindi, Hmong, Ibrani, Igbo, Inggris, Islan, Italia, Jawa, Jepang, Jerman, Kannada, Katala, Kazak, Khmer, Kinyarwanda, Kirghiz, Klingon, Korea, Korsika, Kreol Haiti, Kroat, Kurdi, Laos, Latin, Latvia, Lituania, Luksemburg, Magyar, Makedonia, Malagasi, Malayalam, Malta, Maori, Marathi, Melayu, Mongol, Nepal, Norsk, Odia (Oriya), Pashto, Polandia, Portugis, Prancis, Punjabi, Rumania, Rusia, Samoa, Serb, Sesotho, Shona, Sindhi, Sinhala, Slovakia, Slovenia, Somali, Spanyol, Sunda, Swahili, Swensk, Tagalog, Tajik, Tamil, Tatar, Telugu, Thai, Turki, Turkmen, Ukraina, Urdu, Uyghur, Uzbek, Vietnam, Wales, Xhosa, Yiddi, Yoruba, Yunani, Zulu, Bahasa terjemahan.

Copyright ©2025 I Love Translation. All reserved.

E-mail: